These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35412991)

  • 1. ZNNs With a Varying-Parameter Design Formula for Dynamic Sylvester Quaternion Matrix Equation.
    Xiao L; Huang W; Li X; Sun F; Liao Q; Jia L; Li J; Liu S
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):9981-9991. PubMed ID: 35412991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fixed-time error-monitoring neural network for solving dynamic quaternion-valued Sylvester equations.
    Xiao L; Cao P; Wang Z; Liu S
    Neural Netw; 2024 Feb; 170():494-505. PubMed ID: 38039686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation.
    Xiao L; Zhang Z; Zhang Z; Li W; Li S
    Neural Netw; 2018 Sep; 105():185-196. PubMed ID: 29870926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dynamic Parameter Noise-Tolerant Zeroing Neural Network for Time-Varying Quaternion Matrix Equation With Applications.
    Xiao L; Zhang Y; Huang W; Jia L; Gao X
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8205-8214. PubMed ID: 37015615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.
    Li S; Li Y
    IEEE Trans Cybern; 2014 Aug; 44(8):1397-1407. PubMed ID: 24184789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zeroing Neural Network With Coefficient Functions and Adjustable Parameters for Solving Time-Variant Sylvester Equation.
    Wu W; Zhang Y
    IEEE Trans Neural Netw Learn Syst; 2024 May; 35(5):6757-6766. PubMed ID: 36256719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Analysis of a Novel Integral Recurrent Neural Network for Solving Time-Varying Sylvester Equation.
    Zhang Z; Zheng L; Yang H; Qu X
    IEEE Trans Cybern; 2021 Aug; 51(8):4312-4326. PubMed ID: 31545759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Varying-Parameter Recurrent Neural-Network for Online Solution of Time-Varying Sylvester Equation.
    Zhang Z; Zheng L; Weng J; Mao Y; Lu W; Xiao L
    IEEE Trans Cybern; 2018 Nov; 48(11):3135-3148. PubMed ID: 29994381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GNN Model for Time-Varying Matrix Inversion With Robust Finite-Time Convergence.
    Zhang Y; Li S; Weng J; Liao B
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; 35(1):559-569. PubMed ID: 35609093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Complex Varying-Parameter Convergent-Differential Neural-Network for Solving Online Time-Varying Complex Sylvester Equation.
    Zhang Z; Zheng L
    IEEE Trans Cybern; 2019 Oct; 49(10):3627-3639. PubMed ID: 29994668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Jump-Gain Integral Recurrent Neural Network for Solving Noise-Disturbed Time-Variant Nonlinear Inequality Problems.
    Zhang Z; Song Y; Zheng L; Luo Y
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5793-5806. PubMed ID: 37022813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A recurrent neural network for solving Sylvester equation with time-varying coefficients.
    Zhang Y; Jiang D; Wang J
    IEEE Trans Neural Netw; 2002; 13(5):1053-63. PubMed ID: 18244503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified RNN for Solving Comprehensive Sylvester Equation With TDOA Application.
    Yan J; Jin L; Luo X; Li S
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):12553-12563. PubMed ID: 37037242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations.
    Xiao L; Liao B; Li S; Chen K
    Neural Netw; 2018 Feb; 98():102-113. PubMed ID: 29223869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global finite-time stability of delayed quaternion-valued neural networks based on a class of extended Lyapunov-Razumikhin methods.
    Li C; Cao J; Kashkynbayev A
    Cogn Neurodyn; 2023 Jun; 17(3):729-739. PubMed ID: 37265657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust control for a tracked mobile robot based on a finite-time convergence zeroing neural network.
    Cao Y; Liu B; Pu J
    Front Neurorobot; 2023; 17():1242063. PubMed ID: 37799573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Finite-Time Zeroing Neural Networks With Fixed and Varying Parameters for Solving Dynamic Generalized Lyapunov Equation.
    Zuo Q; Li K; Xiao L; Li K
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7695-7705. PubMed ID: 34143744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Finite-Time Convergent and Noise-Rejection Recurrent Neural Network and Its Discretization for Dynamic Nonlinear Equations Solving.
    Li W; Xiao L; Liao B
    IEEE Trans Cybern; 2020 Jul; 50(7):3195-3207. PubMed ID: 31021811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Varying-Parameter ZNN Models With Finite-Time Convergence and Noise Suppression for Time-Varying Matrix Moore-Penrose Inversion.
    Tan Z; Li W; Xiao L; Hu Y
    IEEE Trans Neural Netw Learn Syst; 2020 Aug; 31(8):2980-2992. PubMed ID: 31536017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified Model Solving Nine Types of Time-Varying Problems in the Frame of Zeroing Neural Network.
    Li J; Shi Y; Xuan H
    IEEE Trans Neural Netw Learn Syst; 2021 May; 32(5):1896-1905. PubMed ID: 32484780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.