These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35413119)
21. Effects of caffeine on mouse skeletal muscle power output during recovery from fatigue. James RS; Wilson RS; Askew GN J Appl Physiol (1985); 2004 Feb; 96(2):545-52. PubMed ID: 14506097 [TBL] [Abstract][Full Text] [Related]
22. The Effect of Increasing Age on the Concentric and Eccentric Contractile Properties of Isolated Mouse Soleus and Extensor Digitorum Longus Muscles. Hill C; James RS; Cox VM; Tallis J J Gerontol A Biol Sci Med Sci; 2018 Apr; 73(5):579-587. PubMed ID: 29236945 [TBL] [Abstract][Full Text] [Related]
23. [No influence of increased frequency on fatigability of tetanic contraction in rat atrophic soleus]. Gao F; Yu ZB Sheng Li Xue Bao; 2005 Oct; 57(5):653-8. PubMed ID: 16220206 [TBL] [Abstract][Full Text] [Related]
24. Early effects of ageing on the mechanical performance of isolated locomotory (EDL) and respiratory (diaphragm) skeletal muscle using the work-loop technique. Tallis J; James RS; Little AG; Cox VM; Duncan MJ; Seebacher F Am J Physiol Regul Integr Comp Physiol; 2014 Sep; 307(6):R670-84. PubMed ID: 24990861 [TBL] [Abstract][Full Text] [Related]
25. Double-sigmoid model for fitting fatigue profiles in mouse fast- and slow-twitch muscle. Cairns SP; Robinson DM; Loiselle DS Exp Physiol; 2008 Jul; 93(7):851-62. PubMed ID: 18344260 [TBL] [Abstract][Full Text] [Related]
26. Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation. Gomez-Cabrera MC; Close GL; Kayani A; McArdle A; Viña J; Jackson MJ Am J Physiol Regul Integr Comp Physiol; 2010 Jan; 298(1):R2-8. PubMed ID: 19828843 [TBL] [Abstract][Full Text] [Related]
27. Influence of ageing on the fatigability of isolated mouse skeletal muscles from mature and aged mice. Brotto MA; Nosek TM; Kolbeck RC Exp Physiol; 2002 Jan; 87(1):77-82. PubMed ID: 11805861 [TBL] [Abstract][Full Text] [Related]
28. [Effects of Janus kinase/signal transduction and activator of transcription 3 pathway inhibitor in skeletal muscle function in severely burned rats and its mechanism]. Bai HL; Duan HJ; Chen C; Liu LY; Wu YS; Han SF; Wang XT Zhonghua Shao Shang Za Zhi; 2021 Mar; 37(3):271-278. PubMed ID: 33706427 [No Abstract] [Full Text] [Related]
29. Does Dietary-Induced Obesity in Old Age Impair the Contractile Performance of Isolated Mouse Soleus, Extensor Digitorum Longus and Diaphragm Skeletal Muscles? Hill C; James RS; Cox VM; Tallis J Nutrients; 2019 Feb; 11(3):. PubMed ID: 30818814 [TBL] [Abstract][Full Text] [Related]
30. Muscle contractile properties during intermittent nontetanic stimulation in rat skeletal muscle. Verburg E; Thorud HM; Eriksen M; Vøllestad NK; Sejersted OM Am J Physiol Regul Integr Comp Physiol; 2001 Dec; 281(6):R1952-65. PubMed ID: 11705782 [TBL] [Abstract][Full Text] [Related]
31. The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres. Chin ER; Allen DG J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):813-24. PubMed ID: 8815213 [TBL] [Abstract][Full Text] [Related]
32. Force output during fatigue with progressively increasing stimulation frequency. Griffin L; Jun BG; Covington C; Doucet BM J Electromyogr Kinesiol; 2008 Jun; 18(3):426-33. PubMed ID: 17208012 [TBL] [Abstract][Full Text] [Related]
33. The influence of stimulation frequency on force-velocity characteristics of in situ rat medial gastrocnemius muscle. de Haan A Exp Physiol; 1998 Jan; 83(1):77-84. PubMed ID: 9483421 [TBL] [Abstract][Full Text] [Related]
34. Dependence of fatigue properties on the pattern of stimulation in the rat diaphragm muscle. Gölgeli A; Ozesmi C; Ozesmi M Indian J Physiol Pharmacol; 1995 Oct; 39(4):315-22. PubMed ID: 8582742 [TBL] [Abstract][Full Text] [Related]
35. Time course changes in in vivo muscle mechanical function and Ca Hinks A; Dalton BE; Mashouri P; Flewwelling LD; Pyle WG; Cheng AJ; Power GA Exp Physiol; 2024 May; 109(5):711-728. PubMed ID: 38500268 [TBL] [Abstract][Full Text] [Related]
36. Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle. Cairns SP; Taberner AJ; Loiselle DS J Appl Physiol (1985); 2009 Jan; 106(1):101-12. PubMed ID: 18948444 [TBL] [Abstract][Full Text] [Related]
37. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Kesar T; Binder-Macleod S Exp Physiol; 2006 Nov; 91(6):967-76. PubMed ID: 16873456 [TBL] [Abstract][Full Text] [Related]
38. Force-frequency relationship during fatiguing contractions of rat medial gastrocnemius muscle. MacDougall KB; Devrome AN; Kristensen AM; MacIntosh BR Sci Rep; 2020 Jul; 10(1):11575. PubMed ID: 32665563 [TBL] [Abstract][Full Text] [Related]
39. Long-lasting in vivo inotropic effects of the K(+) channel blocker 3,4-diaminopyridine during fatigue-inducing stimulation. Van Lunteren E; Moyer M; Pollarine J Muscle Nerve; 2008 Dec; 38(6):1616-22. PubMed ID: 19016549 [TBL] [Abstract][Full Text] [Related]
40. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle. Russ DW; Lovering RM Exp Physiol; 2006 Nov; 91(6):957-66. PubMed ID: 16857718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]