These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35413141)

  • 1. Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes.
    Yang N; Yu S; Zhang W; Cheng HM; Simon P; Jiang X
    Adv Mater; 2022 Aug; 34(34):e2202380. PubMed ID: 35413141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.
    Yoo SJ; Evanko B; Wang X; Romelczyk M; Taylor A; Ji X; Boettcher SW; Stucky GD
    J Am Chem Soc; 2017 Jul; 139(29):9985-9993. PubMed ID: 28696675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic Hydrolysis Lignin-Derived Porous Carbons through Ammonia Activation: Activation Mechanism and Charge Storage Mechanism.
    Jian W; Zhang W; Wu B; Wei X; Liang W; Zhang X; Wen F; Zhao L; Yin J; Lu K; Qiu X
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5425-5438. PubMed ID: 35050588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Porous and Yet Dense" Electrodes for High-Volumetric-Performance Electrochemical Capacitors: Principles, Advances, and Challenges.
    Pan Z; Yang J; Kong J; Loh XJ; Wang J; Liu Z
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103953. PubMed ID: 34796698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors.
    Lim E; Jo C; Lee J
    Nanoscale; 2016 Apr; 8(15):7827-33. PubMed ID: 27020465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors.
    Jiang DE; Wu J
    J Phys Chem Lett; 2013 Apr; 4(8):1260-7. PubMed ID: 26282139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Operating Mechanism of Aqueous Pentyl Viologen/Bromide Redox-Enhanced Electrochemical Capacitors with Ordered Mesoporous Carbon Electrodes.
    Calcagno G; Evanko B; Stucky GD; Ahlberg E; Yoo SJ; Palmqvist AEC
    ACS Appl Mater Interfaces; 2022 May; 14(18):20349-20357. PubMed ID: 34590838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation into Pseudo-Capacitance Behavior of Glycoside-Containing Hydrogels.
    Raravikar N; Dobos A; Narayanan E; Grandhi TS; Mishra S; Rege K; Goryll M
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3554-3561. PubMed ID: 28067487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-Mediator-Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives.
    Hu L; Zhai T; Li H; Wang Y
    ChemSusChem; 2019 Mar; 12(6):1118-1132. PubMed ID: 30427120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors.
    El-Kady MF; Strong V; Dubin S; Kaner RB
    Science; 2012 Mar; 335(6074):1326-30. PubMed ID: 22422977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Chlorine-Based Redox Electrochemical Capacitor.
    Li J; Hu T; Wang Y; Chen S; Wang C; Zhang D; Sun Z; Li F
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24396-24403. PubMed ID: 35580287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capacitance of carbon-based electrical double-layer capacitors.
    Ji H; Zhao X; Qiao Z; Jung J; Zhu Y; Lu Y; Zhang LL; MacDonald AH; Ruoff RS
    Nat Commun; 2014; 5():3317. PubMed ID: 24557361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in WO
    Mineo G; Bruno E; Mirabella S
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37111003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple route to functionalized porous carbon foams from carbon nanodots for metal-free pseudocapacitors.
    Wang C; Sung K; Zhu JZJ; Qu S; Bao J; Chang X; Katsuyama Y; Yang Z; Zhang C; Huang A; Kroes BC; El-Kady MF; Kaner RB
    Mater Horiz; 2024 Feb; 11(3):688-699. PubMed ID: 37990914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Faradaic and Non-Faradaic Self-Discharge Mechanisms in Carbon-Based Electrochemical Capacitors.
    Zhang Q; Wei B
    Small; 2024 Mar; ():e2311957. PubMed ID: 38511541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.