These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35413141)

  • 21. Quantum Capacitance of Two-Dimensional-Material-Based Supercapacitor Electrodes.
    Ghosh S; Behera SK; Mishra A; Casari CS; Ostrikov KK
    Energy Fuels; 2023 Dec; 37(23):17836-17862. PubMed ID: 38094910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supercapatteries as Hybrid Electrochemical Energy Storage Devices: Current Status and Future Prospects.
    Rudra S; Seo HW; Sarker S; Kim DM
    Molecules; 2024 Jan; 29(1):. PubMed ID: 38202828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Capacitance Pseudocapacitors from Li
    Banda H; Dou JH; Chen T; Libretto NJ; Chaudhary M; Bernard GM; Miller JT; Michaelis VK; Dincă M
    J Am Chem Soc; 2021 Feb; 143(5):2285-2292. PubMed ID: 33525869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors.
    Wu M; Zheng W; Hu X; Zhan F; He Q; Wang H; Zhang Q; Chen L
    Small; 2022 Dec; 18(50):e2205101. PubMed ID: 36285775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An overview of carbon materials for flexible electrochemical capacitors.
    He Y; Chen W; Gao C; Zhou J; Li X; Xie E
    Nanoscale; 2013 Oct; 5(19):8799-820. PubMed ID: 23934430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review of electrolyte materials and compositions for electrochemical supercapacitors.
    Zhong C; Deng Y; Hu W; Qiao J; Zhang L; Zhang J
    Chem Soc Rev; 2015 Nov; 44(21):7484-539. PubMed ID: 26050756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced Materials for Sodium-Ion Capacitors with Superior Energy-Power Properties: Progress and Perspectives.
    Zhang H; Hu M; Lv Q; Huang ZH; Kang F; Lv R
    Small; 2020 Apr; 16(15):e1902843. PubMed ID: 31550082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon materials for chemical capacitive energy storage.
    Zhai Y; Dou Y; Zhao D; Fulvio PF; Mayes RT; Dai S
    Adv Mater; 2011 Nov; 23(42):4828-50. PubMed ID: 21953940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible Zinc-Ion Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics.
    Zhang X; Pei Z; Wang C; Yuan Z; Wei L; Pan Y; Mahmood A; Shao Q; Chen Y
    Small; 2019 Nov; 15(47):e1903817. PubMed ID: 31609075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte.
    Hu L; Shi C; Guo K; Zhai T; Li H; Wang Y
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8214-8218. PubMed ID: 29797542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, characterizations and electrochemical performances of anhydrous CoC
    Mishra NK; Mondal R; Singh P
    RSC Adv; 2021 Oct; 11(54):33926-33937. PubMed ID: 35497288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Overview on the Development of Electrochemical Capacitors and Batteries - Part I.
    Martins VL; Neves HR; Monje IE; Leite MM; Oliveira PFM; Antoniassi RM; Chauque S; Morais WG; Melo EC; Obana TT; Souza BL; Torresi RM
    An Acad Bras Cienc; 2020; 92(2):e20200796. PubMed ID: 32638869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MXene as a Charge Storage Host.
    Okubo M; Sugahara A; Kajiyama S; Yamada A
    Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge.
    Chun SE; Evanko B; Wang X; Vonlanthen D; Ji X; Stucky GD; Boettcher SW
    Nat Commun; 2015 Aug; 6():7818. PubMed ID: 26239891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast and stable redox reactions of MnO₂/CNT hybrid electrodes for dynamically stretchable pseudocapacitors.
    Gu T; Wei B
    Nanoscale; 2015 Jul; 7(27):11626-32. PubMed ID: 26090617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved Performance of Ionic Liquid Supercapacitors by using Tetracyanoborate Anions.
    Martins VL; Rennie AJR; Sanchez-Ramirez N; Torresi RM; Hall PJ
    ChemElectroChem; 2018 Feb; 5(4):598-604. PubMed ID: 29577008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.