These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35413197)

  • 1. SPICA Force Field for Proteins and Peptides.
    Kawamoto S; Liu H; Miyazaki Y; Seo S; Dixit M; DeVane R; MacDermaid C; Fiorin G; Klein ML; Shinoda W
    J Chem Theory Comput; 2022 May; 18(5):3204-3217. PubMed ID: 35413197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Protein Model in SPICA Force Field.
    Yamada T; Miyazaki Y; Harada S; Kumar A; Vanni S; Shinoda W
    J Chem Theory Comput; 2023 Dec; 19(23):8967-8977. PubMed ID: 37989551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol.
    Seo S; Shinoda W
    J Chem Theory Comput; 2019 Jan; 15(1):762-774. PubMed ID: 30514078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pSPICA: A Coarse-Grained Force Field for Lipid Membranes Based on a Polar Water Model.
    Miyazaki Y; Okazaki S; Shinoda W
    J Chem Theory Comput; 2020 Jan; 16(1):782-793. PubMed ID: 31751511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pSPICA Force Field Extended for Proteins and Peptides.
    Miyazaki Y; Shinoda W
    J Chem Inf Model; 2024 Jan; 64(2):532-542. PubMed ID: 38156656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
    Psachoulia E; Marshall DP; Sansom MS
    Acc Chem Res; 2010 Mar; 43(3):388-96. PubMed ID: 20017540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-grained molecular dynamics of tetrameric transmembrane peptide bundles within a lipid bilayer.
    Nguyen TH; Rao NZ; Schroeder WM; Moore PB
    Chem Phys Lipids; 2010 Jun; 163(6):530-7. PubMed ID: 20433819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case.
    Farrotti A; Bocchinfuso G; Palleschi A; Rosato N; Salnikov ES; Voievoda N; Bechinger B; Stella L
    Biochim Biophys Acta; 2015 Feb; 1848(2):581-92. PubMed ID: 25445672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.
    Hu Y; Sinha SK; Patel S
    J Phys Chem B; 2014 Oct; 118(41):11973-92. PubMed ID: 25290376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations.
    Wassenaar TA; Ingólfsson HI; Priess M; Marrink SJ; Schäfer LV
    J Phys Chem B; 2013 Apr; 117(13):3516-30. PubMed ID: 23406326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained molecular dynamics simulations of membrane proteins and peptides.
    Bond PJ; Holyoake J; Ivetac A; Khalid S; Sansom MS
    J Struct Biol; 2007 Mar; 157(3):593-605. PubMed ID: 17116404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extension of the CAVS model to the simulation of helical peptides in a membrane environment.
    Shen H; Wu Z; Lu C
    Phys Chem Chem Phys; 2021 Jun; 23(22):12850-12863. PubMed ID: 34060579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved prediction of bilayer and monolayer properties using a refined BMW-MARTINI force field.
    Miguel V; Perillo MA; Villarreal MA
    Biochim Biophys Acta; 2016 Nov; 1858(11):2903-2910. PubMed ID: 27591685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring peptide-membrane interactions with coarse-grained MD simulations.
    Hall BA; Chetwynd AP; Sansom MS
    Biophys J; 2011 Apr; 100(8):1940-8. PubMed ID: 21504730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding and insertion thermodynamics of the transmembrane WALP peptide.
    Bereau T; Bennett WF; Pfaendtner J; Deserno M; Karttunen M
    J Chem Phys; 2015 Dec; 143(24):243127. PubMed ID: 26723612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer.
    Bond PJ; Wee CL; Sansom MS
    Biochemistry; 2008 Oct; 47(43):11321-31. PubMed ID: 18831536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.