These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 35413317)
21. Temperature-responsive hydrogel prepared from carboxymethyl cellulose-stabilized N-vinylcaprolactam with potential for fertilizer delivery. Shang H; Yang X; Liu H Carbohydr Polym; 2023 Aug; 313():120875. PubMed ID: 37182965 [TBL] [Abstract][Full Text] [Related]
22. Interpenetrating and semi-interpenetrating network superabsorbent hydrogels based on sodium alginate and cellulose nanocrystals: A biodegradable and high-performance solution for adult incontinence pads. Ismaeilimoghadam S; Jonoobi M; Ashori A; Shahraki A; Azimi B; Danti S Int J Biol Macromol; 2023 Dec; 253(Pt 8):127118. PubMed ID: 37802434 [TBL] [Abstract][Full Text] [Related]
23. Superabsorbent carboxymethyl cellulose-based hydrogel fabricated by liquid-metal-induced double crosslinking polymerisation. Cao Q; Chen J; Wang M; Wang Z; Wang W; Shen Y; Xue Y; Li B; Ma Y; Yao Y; Wu H Carbohydr Polym; 2024 May; 331():121910. PubMed ID: 38388046 [TBL] [Abstract][Full Text] [Related]
24. Effect of chain structures of monomer on hydroxyethyl cellulose-based superabsorbent properties and improvement of chickpeas plant growth of water deficit-stressed. Etminani-Esfahani N; Rahmati A Int J Biol Macromol; 2024 Jun; 269(Pt 2):131906. PubMed ID: 38679266 [TBL] [Abstract][Full Text] [Related]
25. Rice straw derived cellulose-based hydrogels synthesis and applications as water reservoir system. Kadry G; El-Gawad HA Int J Biol Macromol; 2023 Dec; 253(Pt 4):127058. PubMed ID: 37769760 [TBL] [Abstract][Full Text] [Related]
26. Novel low-cost carboxymethyl cellulose microspheres with excellent fertilizer absorbency and release behavior for saline-alkali soil. Qi H; Ma R; Shi C; Huang Z; Liu S; Sun L; Hu T Int J Biol Macromol; 2019 Jun; 131():412-419. PubMed ID: 30853583 [TBL] [Abstract][Full Text] [Related]
27. Synthesis of cellulose-g-poly(acrylic acid) with high water absorbency using pineapple-leaf extracted cellulose fibers. Thien DVH; Lam DN; Diem HN; Pham TYN; Bui NQ; Truc TNT; Van-Pham DT Carbohydr Polym; 2022 Jul; 288():119421. PubMed ID: 35450616 [TBL] [Abstract][Full Text] [Related]
28. Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Sawut A; Yimit M; Sun W; Nurulla I Carbohydr Polym; 2014 Jan; 101():231-9. PubMed ID: 24299769 [TBL] [Abstract][Full Text] [Related]
29. Synthesis and characterization of magnetic clay-based carboxymethyl cellulose-acrylic acid hydrogel nanocomposite for methylene blue dye removal from aqueous solution. Malatji N; Makhado E; Ramohlola KE; Modibane KD; Maponya TC; Monama GR; Hato MJ Environ Sci Pollut Res Int; 2020 Dec; 27(35):44089-44105. PubMed ID: 32761344 [TBL] [Abstract][Full Text] [Related]
30. Enhanced Swelling and Responsive Properties of Pineapple Peel Carboxymethyl Cellulose-g-poly(acrylic acid-co-acrylamide) Superabsorbent Hydrogel by the Introduction of Carclazyte. Dai H; Huang H J Agric Food Chem; 2017 Jan; 65(3):565-574. PubMed ID: 28049294 [TBL] [Abstract][Full Text] [Related]
31. Comparative evaluation for controlling release of niacin from protein- and cellulose-chitosan based hydrogels. Hanna DH; Lotfy VF; Basta AH; Saad GR Int J Biol Macromol; 2020 May; 150():228-237. PubMed ID: 32044369 [TBL] [Abstract][Full Text] [Related]
32. Utilization of waste hemicelluloses lye for superabsorbent hydrogel synthesis. Liu X; Luan S; Li W Int J Biol Macromol; 2019 Jul; 132():954-962. PubMed ID: 30974135 [TBL] [Abstract][Full Text] [Related]
33. Topochemical Engineering of Cellulose-Carboxymethyl Cellulose Beads: A Low-Field NMR Relaxometry Study. De Wever P; de Oliveira-Silva R; Marreiros J; Ameloot R; Sakellariou D; Fardim P Molecules; 2020 Dec; 26(1):. PubMed ID: 33375128 [TBL] [Abstract][Full Text] [Related]
34. Preparation of fast-swelling porous superabsorbent hydrogels with high saline water absorbency under pressure by foaming and post surface crosslinking. Zhai N; Wang B Sci Rep; 2023 Aug; 13(1):13815. PubMed ID: 37620516 [TBL] [Abstract][Full Text] [Related]
35. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Peng N; Wang Y; Ye Q; Liang L; An Y; Li Q; Chang C Carbohydr Polym; 2016 Feb; 137():59-64. PubMed ID: 26686105 [TBL] [Abstract][Full Text] [Related]
36. A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation. Zhang H; Luan Q; Huang Q; Tang H; Huang F; Li W; Wan C; Liu C; Xu J; Guo P; Zhou Q Carbohydr Polym; 2017 Feb; 157():1830-1836. PubMed ID: 27987901 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and characterization of agricultural controllable humic acid superabsorbent. Gao L; Wang S; Zhao X J Environ Sci (China); 2013 Dec; 25 Suppl 1():S69-76. PubMed ID: 25078843 [TBL] [Abstract][Full Text] [Related]
38. Morphological and Swelling Potential Evaluation of Ahmad S; Manzoor K; Purwar R; Ikram S ACS Omega; 2020 Jul; 5(29):17955-17961. PubMed ID: 32743168 [TBL] [Abstract][Full Text] [Related]
39. Chemically crosslinked hydrogel and its driving force towards superabsorbent behaviour. Salleh KM; Zakaria S; Sajab MS; Gan S; Chia CH; Jaafar SNS; Amran UA Int J Biol Macromol; 2018 Oct; 118(Pt B):1422-1430. PubMed ID: 29964115 [TBL] [Abstract][Full Text] [Related]