These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35413327)

  • 21. Gelatin/sodium alginate hydrogel-coated decellularized porcine coronary artery to construct bilayer tissue engineered blood vessels.
    Du J; Hu X; Su Y; Wei T; Jiao Z; Liu T; Wang H; Nie Y; Li X; Song K
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2070-2083. PubMed ID: 35500770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of various crosslinking agents on collagen/chitosan scaffolds for myocardial tissue engineering.
    Fang Y; Zhang T; Song Y; Sun W
    Biomed Mater; 2020 May; 15(4):045003. PubMed ID: 31530754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Biocompatibility of Multi-Source Stem Cells and Gelatin-Carboxymethyl Chitosan-Sodium Alginate Hybrid Biomaterials.
    Wang X; Li S; Yu H; Lv J; Fan M; Wang X; Wang X; Liang Y; Mao L; Zhao Z
    Tissue Eng Regen Med; 2022 Jun; 19(3):491-503. PubMed ID: 35119649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications.
    Jithendra P; Rajam AM; Kalaivani T; Mandal AB; Rose C
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7291-8. PubMed ID: 23838342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro.
    Leena RS; Vairamani M; Selvamurugan N
    Colloids Surf B Biointerfaces; 2017 Oct; 158():308-318. PubMed ID: 28711017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering.
    Chawla D; Kaur T; Joshi A; Singh N
    Int J Biol Macromol; 2020 Feb; 144():560-567. PubMed ID: 31857163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells.
    Petrenko YA; Ivanov RV; Petrenko AY; Lozinsky VI
    J Mater Sci Mater Med; 2011 Jun; 22(6):1529-40. PubMed ID: 21526407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering.
    Singh YP; Dasgupta S; Bhaskar R
    J Biomater Sci Polym Ed; 2019 Dec; 30(18):1756-1778. PubMed ID: 31526176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering.
    Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC
    Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold.
    Wu Z; Li Q; Xie S; Shan X; Cai Z
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110530. PubMed ID: 32228940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute.
    Sobhanian P; Khorram M; Hashemi SS; Mohammadi A
    Int J Biol Macromol; 2019 Jun; 130():977-987. PubMed ID: 30851329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells.
    Chen E; Yang L; Ye C; Zhang W; Ran J; Xue D; Wang Z; Pan Z; Hu Q
    Acta Biomater; 2018 Jun; 73():377-387. PubMed ID: 29678676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of decellularized meniscus extracellular matrix and gelatin/chitosan scaffolds for meniscus tissue engineering.
    Yu Z; Lili J; Tiezheng Z; Li S; Jianzhuang W; Haichao D; Kedong S; Tianqing L
    Biomed Mater Eng; 2019; 30(2):125-132. PubMed ID: 30741661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
    Chen CH; Shyu VB; Chen JP; Lee MY
    Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.
    Lotfi M; Bagherzadeh R; Naderi-Meshkin H; Mahdipour E; Mafinezhad A; Sadeghnia HR; Esmaily H; Maleki M; Hasssanzadeh H; Ghayaour-Mobarhan M; Bidkhori HR; Bahrami AR
    Biopolymers; 2016 Mar; 105(3):163-75. PubMed ID: 26566174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro].
    Yu HY; Ma DD; Wu BL
    Nan Fang Yi Ke Da Xue Xue Bao; 2017 May; 37(5):668-672. PubMed ID: 28539292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells.
    Singh D; Zo SM; Kumar A; Han SS
    J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.