BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35413385)

  • 1. Theoretical analysis of reversible and irreversible mitochondrial swelling invivo.
    Khmelinskii I; Makarov V
    Biosystems; 2022 Jul; 217():104679. PubMed ID: 35413385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible and irreversible mitochondrial swelling in vitro.
    Khmelinskii I; Makarov V
    Biophys Chem; 2021 Nov; 278():106668. PubMed ID: 34418677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical approaches used in the modelling of reversible and irreversible mitochondrial swelling in vitro.
    Khmelinskii I; Makarov VI
    Prog Biophys Mol Biol; 2022 Aug; 172():15-23. PubMed ID: 35447196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico simulation of reversible and irreversible swelling of mitochondria: The role of membrane rigidity.
    Makarov VI; Khmelinskii I; Khuchua Z; Javadov S
    Mitochondrion; 2020 Jan; 50():71-81. PubMed ID: 31669621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible and irreversible mitochondrial swelling: Effects of variable mitochondrial activity.
    Khmelinskii I; Makarov V
    Biosystems; 2021 Dec; 210():104559. PubMed ID: 34627969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Modeling of In Vitro Swelling of Mitochondria: A Biophysical Approach.
    Makarov VI; Khmelinskii I; Javadov S
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29597314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretching tension effects in permeability transition pores of inner mitochondrial membrane.
    Khmelinskii I; Makarov V
    Biosystems; 2021 Oct; 208():104488. PubMed ID: 34274463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple kinetic model of mitochondrial swelling in cardiac cells.
    Chapa-Dubocq X; Makarov V; Javadov S
    J Cell Physiol; 2018 Jul; 233(7):5310-5321. PubMed ID: 29215716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swelling and membrane potential dynamics of glial Müller cells.
    Khmelinskii I; Makarov V
    Biosystems; 2022 Nov; 221():104772. PubMed ID: 36113739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different approaches to modeling analysis of mitochondrial swelling.
    Javadov S; Chapa-Dubocq X; Makarov V
    Mitochondrion; 2018 Jan; 38():58-70. PubMed ID: 28802667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Effects of Mechanical Stress of Biological Membranes in Modeling of Swelling Dynamics of Biological Systems.
    Khmelinskii I; Makarov VI
    Sci Rep; 2020 May; 10(1):8395. PubMed ID: 32439841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial swelling and incipient outer membrane rupture in preapoptotic and apoptotic cells.
    Sesso A; Belizário JE; Marques MM; Higuchi ML; Schumacher RI; Colquhoun A; Ito E; Kawakami J
    Anat Rec (Hoboken); 2012 Oct; 295(10):1647-59. PubMed ID: 22907871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria.
    Song DH; Park J; Maurer LL; Lu W; Philbert MA; Sastry AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062723. PubMed ID: 24483502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force.
    Lee WK; Spielmann M; Bork U; Thévenod F
    Am J Physiol Cell Physiol; 2005 Sep; 289(3):C656-64. PubMed ID: 15843441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OPA1 regulates respiratory supercomplexes assembly: The role of mitochondrial swelling.
    Jang S; Javadov S
    Mitochondrion; 2020 Mar; 51():30-39. PubMed ID: 31870826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The iron chelator Deferasirox causes severe mitochondrial swelling without depolarization due to a specific effect on inner membrane permeability.
    Gottwald EM; Schuh CD; Drücker P; Haenni D; Pearson A; Ghazi S; Bugarski M; Polesel M; Duss M; Landau EM; Kaech A; Ziegler U; Lundby AKM; Lundby C; Dittrich PS; Hall AM
    Sci Rep; 2020 Jan; 10(1):1577. PubMed ID: 32005861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation.
    Kowaltowski AJ; Castilho RF; Grijalba MT; Bechara EJ; Vercesi AE
    J Biol Chem; 1996 Feb; 271(6):2929-34. PubMed ID: 8621682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells.
    Minamikawa T; Williams DA; Bowser DN; Nagley P
    Exp Cell Res; 1999 Jan; 246(1):26-37. PubMed ID: 9882512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of mitochondrial glutathione and calcium by a cyclosporin A-sensitive mechanism occurs without large amplitude swelling.
    Savage MK; Reed DJ
    Arch Biochem Biophys; 1994 Nov; 315(1):142-52. PubMed ID: 7979391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water permeability of rat liver mitochondria: A biophysical study.
    Calamita G; Gena P; Meleleo D; Ferri D; Svelto M
    Biochim Biophys Acta; 2006 Aug; 1758(8):1018-24. PubMed ID: 16934743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.