These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 35413402)
1. Combining enabling formulation strategies to generate supersaturated solutions of delamanid: In situ salt formation during amorphous solid dispersion fabrication for more robust release profiles. Duong TV; Nguyen HT; Taylor LS Eur J Pharm Biopharm; 2022 May; 174():131-143. PubMed ID: 35413402 [TBL] [Abstract][Full Text] [Related]
2. Impact of Gastric pH Variations on the Release of Amorphous Solid Dispersion Formulations Containing a Weakly Basic Drug and Enteric Polymers. Nguyen HT; Van Duong T; Taylor LS Mol Pharm; 2023 Mar; 20(3):1681-1695. PubMed ID: 36730186 [TBL] [Abstract][Full Text] [Related]
3. Combining drug salt formation with amorphous solid dispersions - a double edged sword. Hiew TN; Taylor LS J Control Release; 2022 Dec; 352():47-60. PubMed ID: 36206947 [TBL] [Abstract][Full Text] [Related]
4. Enteric coating of tablets containing an amorphous solid dispersion of an enteric polymer and a weakly basic drug: A strategy to enhance in vitro release. Nguyen HT; Van Duong T; Taylor LS Int J Pharm; 2023 Jul; 642():123139. PubMed ID: 37311499 [TBL] [Abstract][Full Text] [Related]
5. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels. Schver GCRM; Lee PI Mol Pharm; 2018 May; 15(5):2017-2026. PubMed ID: 29601723 [TBL] [Abstract][Full Text] [Related]
6. Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Indulkar AS; Lou X; Zhang GGZ; Taylor LS Mol Pharm; 2019 Mar; 16(3):1327-1339. PubMed ID: 30669846 [TBL] [Abstract][Full Text] [Related]
7. Comparative Evaluation of Particle Size Reduction, Salt Formation, and Amorphous Formulation on the Biopharmaceutical Performance of a Weak Base Drug Candidate. Zhang W; Jia W; Weitz BW; Ma F; Chen Y; Chiang PC; Hou HH; Nagapudi K Mol Pharm; 2023 Nov; 20(11):5888-5900. PubMed ID: 37792707 [TBL] [Abstract][Full Text] [Related]
8. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels. Sun DD; Ju TC; Lee PI Eur J Pharm Biopharm; 2012 May; 81(1):149-58. PubMed ID: 22233548 [TBL] [Abstract][Full Text] [Related]
9. Amorphous solid dispersion of nisoldipine by solvent evaporation technique: preparation, characterization, in vitro, in vivo evaluation, and scale up feasibility study. Chavan RB; Lodagekar A; Yadav B; Shastri NR Drug Deliv Transl Res; 2020 Aug; 10(4):903-918. PubMed ID: 32378174 [TBL] [Abstract][Full Text] [Related]
10. Improved dissolution of an enteric polymer and its amorphous solid dispersions by polymer salt formation. Qi Q; Taylor LS Int J Pharm; 2022 Jun; 622():121886. PubMed ID: 35661745 [TBL] [Abstract][Full Text] [Related]
11. Hydroxypropyl cellulose stabilizes amorphous solid dispersions of the poorly water soluble drug felodipine. Sarode AL; Malekar SA; Cote C; Worthen DR Carbohydr Polym; 2014 Nov; 112():512-9. PubMed ID: 25129775 [TBL] [Abstract][Full Text] [Related]
12. Moisture-Induced Amorphous Phase Separation of Amorphous Solid Dispersions: Molecular Mechanism, Microstructure, and Its Impact on Dissolution Performance. Chen H; Pui Y; Liu C; Chen Z; Su CC; Hageman M; Hussain M; Haskell R; Stefanski K; Foster K; Gudmundsson O; Qian F J Pharm Sci; 2018 Jan; 107(1):317-326. PubMed ID: 29107047 [TBL] [Abstract][Full Text] [Related]
13. Effects of Additives on the Physical Stability and Dissolution of Polymeric Amorphous Solid Dispersions: a Review. Li J; Wang Y; Yu D AAPS PharmSciTech; 2023 Aug; 24(7):175. PubMed ID: 37603110 [TBL] [Abstract][Full Text] [Related]
14. Elucidating the effect of crystallization on drug release from amorphous solid dispersions in soluble and insoluble carriers. Ojo AT; Ma C; Lee PI Int J Pharm; 2020 Dec; 591():120005. PubMed ID: 33132149 [TBL] [Abstract][Full Text] [Related]
15. Hydrolysis of cellulose acetate phthalate and hydroxypropyl methylcellulose phthalate in amorphous solid dispersions. Li J; Yu D; Zeng C; Mosquera-Giraldo LI; Everlof G; Foster K; Gesenberg C J Pharm Sci; 2025 Jan; 114(1):89-97. PubMed ID: 38608727 [TBL] [Abstract][Full Text] [Related]
16. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. Sun DD; Lee PI J Control Release; 2015 Aug; 211():85-93. PubMed ID: 26054795 [TBL] [Abstract][Full Text] [Related]
17. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution. Purohit HS; Taylor LS Pharm Res; 2017 Dec; 34(12):2842-2861. PubMed ID: 28956218 [TBL] [Abstract][Full Text] [Related]
18. Effect of Counterions on Dissolution of Amorphous Solid Dispersions Studied by Surface Area Normalized Dissolution. Chen Y; Lubach JW; Tang S; Narang AS Mol Pharm; 2021 Sep; 18(9):3429-3438. PubMed ID: 34338529 [TBL] [Abstract][Full Text] [Related]
19. Supersaturation and phase behavior during dissolution of amorphous solid dispersions. Kong Y; Wang W; Wang C; Li L; Peng D; Tian B Int J Pharm; 2023 Jan; 631():122524. PubMed ID: 36549404 [TBL] [Abstract][Full Text] [Related]
20. Formulating Amorphous Solid Dispersions: Impact of Inorganic Salts on Drug Release from Tablets Containing Itraconazole-HPMC Extrudate. Takano R; Maurer R; Jacob L; Stowasser F; Stillhart C; Page S Mol Pharm; 2020 Aug; 17(8):2768-2778. PubMed ID: 31794228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]