These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 35413402)
21. Insight into Amorphous Solid Dispersion Performance by Coupled Dissolution and Membrane Mass Transfer Measurements. Hate SS; Reutzel-Edens SM; Taylor LS Mol Pharm; 2019 Jan; 16(1):448-461. PubMed ID: 30521350 [TBL] [Abstract][Full Text] [Related]
22. Dissolution, phase behavior and mass transport of amorphous solid dispersions in aspirated human intestinal fluids. Elkhabaz A; Moseson DE; Brouwers J; Augustijns P; Taylor LS J Pharm Sci; 2025 Jan; 114(1):336-349. PubMed ID: 39419479 [TBL] [Abstract][Full Text] [Related]
23. Mechanistic insights into effect of surfactants on oral bioavailability of amorphous solid dispersions. Schittny A; Philipp-Bauer S; Detampel P; Huwyler J; Puchkov M J Control Release; 2020 Apr; 320():214-225. PubMed ID: 31978445 [TBL] [Abstract][Full Text] [Related]
24. An Examination of Water Vapor Sorption by Multicomponent Crystalline and Amorphous Solids and Its Effects on Their Solid-State Properties. Newman A; Zografi G J Pharm Sci; 2019 Mar; 108(3):1061-1080. PubMed ID: 30391302 [TBL] [Abstract][Full Text] [Related]
25. Characterization of Phase Transformations for Amorphous Solid Dispersions of a Weakly Basic Drug upon Dissolution in Biorelevant Media. Elkhabaz A; Sarkar S; Simpson GJ; Taylor LS Pharm Res; 2019 Oct; 36(12):174. PubMed ID: 31667638 [TBL] [Abstract][Full Text] [Related]
26. Drug Release and Nanodroplet Formation from Amorphous Solid Dispersions: Insight into the Roles of Drug Physicochemical Properties and Polymer Selection. Yang R; Mann AKP; Van Duong T; Ormes JD; Okoh GA; Hermans A; Taylor LS Mol Pharm; 2021 May; 18(5):2066-2081. PubMed ID: 33784104 [TBL] [Abstract][Full Text] [Related]
27. In Situ Salification in Polar Solvents: a Paradigm for Enabling Drug Delivery of Weakly Ionic Drugs as Amorphous Solid Dispersion. Nair R; Lamare I; Tiwari NK; Ravi PR; Pillai R AAPS PharmSciTech; 2018 Jan; 19(1):326-337. PubMed ID: 28721630 [TBL] [Abstract][Full Text] [Related]
28. Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug-Polymer Interactions. Hiew TN; Zemlyanov DY; Taylor LS Mol Pharm; 2022 Feb; 19(2):392-413. PubMed ID: 34494842 [TBL] [Abstract][Full Text] [Related]
29. A Mechanistic Model for Predicting the Physical Stability of Amorphous Solid Dispersions. Ojo AT; Lee PI J Pharm Sci; 2021 Apr; 110(4):1495-1512. PubMed ID: 32818440 [TBL] [Abstract][Full Text] [Related]
30. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Schittny A; Huwyler J; Puchkov M Drug Deliv; 2020 Dec; 27(1):110-127. PubMed ID: 31885288 [TBL] [Abstract][Full Text] [Related]
31. Enhanced dissolution rate of nimodipine through β-lactoglobulin based formulation. Leng D; Bulduk B; Anlahr J; Müllers W; Löbmann K Int J Pharm; 2023 Mar; 635():122693. PubMed ID: 36754186 [TBL] [Abstract][Full Text] [Related]
32. Congruent Release of Drug and Polymer from Amorphous Solid Dispersions: Insights into the Role of Drug-Polymer Hydrogen Bonding, Surface Crystallization, and Glass Transition. Saboo S; Kestur US; Flaherty DP; Taylor LS Mol Pharm; 2020 Apr; 17(4):1261-1275. PubMed ID: 32134677 [TBL] [Abstract][Full Text] [Related]
33. Dissolution of Danazol Amorphous Solid Dispersions: Supersaturation and Phase Behavior as a Function of Drug Loading and Polymer Type. Jackson MJ; Kestur US; Hussain MA; Taylor LS Mol Pharm; 2016 Jan; 13(1):223-31. PubMed ID: 26618718 [TBL] [Abstract][Full Text] [Related]
34. Amorphous Polymeric Drug Salts as Ionic Solid Dispersion Forms of Ciprofloxacin. Mesallati H; Umerska A; Paluch KJ; Tajber L Mol Pharm; 2017 Jul; 14(7):2209-2223. PubMed ID: 28570079 [TBL] [Abstract][Full Text] [Related]
35. Physical Stability and Dissolution of Lumefantrine Amorphous Solid Dispersions Produced by Spray Anti-Solvent Precipitation. Bhujbal SV; Pathak V; Zemlyanov DY; Taylor LS; Zhou QT J Pharm Sci; 2021 Jun; 110(6):2423-2431. PubMed ID: 33387599 [TBL] [Abstract][Full Text] [Related]
36. Mechanistic understanding of the phase behavior of supersaturated solutions of poorly water-soluble drugs. Tres F; Posada MM; Hall SD; Mohutsky MA; Taylor LS Int J Pharm; 2018 May; 543(1-2):29-37. PubMed ID: 29572154 [TBL] [Abstract][Full Text] [Related]
38. Dissolution Performance of High Drug Loading Celecoxib Amorphous Solid Dispersions Formulated with Polymer Combinations. Xie T; Taylor LS Pharm Res; 2016 Mar; 33(3):739-50. PubMed ID: 26563205 [TBL] [Abstract][Full Text] [Related]
39. Amorphous Drug-Polymer Salts: Maximizing Proton Transfer to Enhance Stability and Release. Neusaenger AL; Yao X; Yu J; Kim S; Hui HW; Huang L; Que C; Yu L Mol Pharm; 2023 Feb; 20(2):1347-1356. PubMed ID: 36668815 [TBL] [Abstract][Full Text] [Related]
40. The influence of hydrogen bonding between different crystallization tendency drugs and PVPVA on the stability of amorphous solid dispersions. Wu J; Mooter GVD Int J Pharm; 2023 Nov; 646():123440. PubMed ID: 37742824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]