These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 35413478)
1. Enhanced bone formation in locally-optimised, low-stiffness additive manufactured titanium implants: An in silico and in vivo tibial advancement study. Shum JM; Gadomski BC; Tredinnick SJ; Fok W; Fernandez J; Nelson B; Palmer RH; McGilvray KC; Hooper GJ; Puttlitz C; Easley J; Woodfield TBF Acta Biomater; 2023 Jan; 156():202-213. PubMed ID: 35413478 [TBL] [Abstract][Full Text] [Related]
2. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477 [TBL] [Abstract][Full Text] [Related]
3. High-strength, porous additively manufactured implants with optimized mechanical osseointegration. Kelly CN; Wang T; Crowley J; Wills D; Pelletier MH; Westrick ER; Adams SB; Gall K; Walsh WR Biomaterials; 2021 Dec; 279():121206. PubMed ID: 34715639 [TBL] [Abstract][Full Text] [Related]
4. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants. Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415 [TBL] [Abstract][Full Text] [Related]
5. Partial Bone Formation in Additive Manufactured Porous Implants Reduces Predicted Stress and Danger of Fatigue Failure. Cheong VS; Fromme P; Coathup MJ; Mumith A; Blunn GW Ann Biomed Eng; 2020 Jan; 48(1):502-514. PubMed ID: 31549330 [TBL] [Abstract][Full Text] [Related]
6. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553 [TBL] [Abstract][Full Text] [Related]
7. A Novel Nanostructured Surface on Titanium Implants Increases Osseointegration in a Sheep Model. Jones CF; Quarrington RD; Tsangari H; Starczak Y; Mulaibrahimovic A; Burzava ALS; Christou C; Barker AJ; Morel J; Bright R; Barker D; Brown T; Vasilev K; Anderson PH Clin Orthop Relat Res; 2022 Nov; 480(11):2232-2250. PubMed ID: 36001022 [TBL] [Abstract][Full Text] [Related]
8. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. Li J; Cui X; Hooper GJ; Lim KS; Woodfield TBF J Mech Behav Biomed Mater; 2020 May; 105():103671. PubMed ID: 32090892 [TBL] [Abstract][Full Text] [Related]
9. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: Animal models and bone ingrowth outcome measures. Spece H; Basgul C; Andrews CE; MacDonald DW; Taheri ML; Kurtz SM J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1436-1454. PubMed ID: 33484102 [TBL] [Abstract][Full Text] [Related]
10. Hybrid fabrication of photo-clickable vascular hydrogels with additive manufactured titanium implants for enhanced osseointegration and vascularized bone formation. Li J; Cui X; Lindberg GCJ; Alcala-Orozco CR; Hooper GJ; Lim KS; Woodfield TBF Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35320796 [TBL] [Abstract][Full Text] [Related]
12. Histological and biomechanical analysis of porous additive manufactured implants made by direct metal laser sintering: a pilot study in sheep. Stübinger S; Mosch I; Robotti P; Sidler M; Klein K; Ferguson SJ; von Rechenberg B J Biomed Mater Res B Appl Biomater; 2013 Oct; 101(7):1154-63. PubMed ID: 23564723 [TBL] [Abstract][Full Text] [Related]
13. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. Ren B; Wan Y; Liu C; Wang H; Yu M; Zhang X; Huang Y Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111505. PubMed ID: 33255064 [TBL] [Abstract][Full Text] [Related]
14. In vivo osseointegration of a randomized trabecular titanium structure obtained by an additive manufacturing technique. Ragone V; Canciani E; Arosio M; Olimpo M; Piras LA; von Degerfeld MM; Augusti D; D'Ambrosi R; Dellavia C J Mater Sci Mater Med; 2020 Jan; 31(2):17. PubMed ID: 31965345 [TBL] [Abstract][Full Text] [Related]
15. Influence of the overall stiffness of a load-bearing porous titanium implant on bone ingrowth in critical-size mandibular bone defects in sheep. Schouman T; Schmitt M; Adam C; Dubois G; Rouch P J Mech Behav Biomed Mater; 2016 Jun; 59():484-496. PubMed ID: 26999620 [TBL] [Abstract][Full Text] [Related]
16. Does implantation site influence bone ingrowth into 3D-printed porous implants? Walsh WR; Pelletier MH; Wang T; Lovric V; Morberg P; Mobbs RJ Spine J; 2019 Nov; 19(11):1885-1898. PubMed ID: 31255790 [TBL] [Abstract][Full Text] [Related]
17. Implant-delivered Alendronate Causes a Dose-dependent Response on Net Bone Formation Around Porous Titanium Implants in Canines. Pura JA; Bobyn JD; Tanzer M Clin Orthop Relat Res; 2016 May; 474(5):1224-33. PubMed ID: 26831478 [TBL] [Abstract][Full Text] [Related]