BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35413698)

  • 21. A Low-cost, Smartphone-only Pulse Transit Time Measurement System Using Cardio-mechanical Signals and Optical Sensors.
    Yang C; Dong Y; Chen Y; Tavassolian N
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction.
    Attia ZI; Noseworthy PA; Lopez-Jimenez F; Asirvatham SJ; Deshmukh AJ; Gersh BJ; Carter RE; Yao X; Rabinstein AA; Erickson BJ; Kapa S; Friedman PA
    Lancet; 2019 Sep; 394(10201):861-867. PubMed ID: 31378392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms.
    Sodmann P; Vollmer M; Nath N; Kaderali L
    Physiol Meas; 2018 Oct; 39(10):104005. PubMed ID: 30235165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-Time Cardiac Beat Detection and Heart Rate Monitoring from Combined Seismocardiography and Gyrocardiography.
    D'Mello Y; Skoric J; Xu S; Roche PJR; Lortie M; Gagnon S; Plant DV
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms on Healthy Volunteers.
    Sieciński S; Kostka PS; Tkacz EJ
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of 1D and 2D Deep Convolutional Neural Networks for Driving Event Recognition.
    Escottá ÁT; Beccaro W; Ramírez MA
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep residual-dense network based on bidirectional recurrent neural network for atrial fibrillation detection.
    Laghari AA; Sun Y; Alhussein M; Aurangzeb K; Anwar MS; Rashid M
    Sci Rep; 2023 Sep; 13(1):15109. PubMed ID: 37704659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings.
    Rubin J; Parvaneh S; Rahman A; Conroy B; Babaeizadeh S
    J Electrocardiol; 2018; 51(6S):S18-S21. PubMed ID: 30122456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Learning-Based Real-Time Auto Classification of Smartphone Measured Bridge Vibration Data.
    Shrestha A; Dang J
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atrial Fibrillation Detection with Single-Lead Electrocardiogram Based on Temporal Convolutional Network-ResNet.
    Zhao X; Zhou R; Ning L; Guo Q; Liang Y; Yang J
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Study on Heart Rate Variability Analysis for Atrial Fibrillation Detection in Short Single-Lead ECG Recordings.
    Nguyen A; Ansari S; Hooshmand M; Lin K; Ghanbari H; Gryak J; Najarian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():526-529. PubMed ID: 30440450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning Approach for Highly Specific Atrial Fibrillation and Flutter Detection based on RR Intervals.
    Ivanovic MD; Atanasoski V; Shvilkin A; Hadzievski L; Maluckov A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1780-1783. PubMed ID: 31946242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precordial Vibrations: A Review of Wearable Systems, Signal Processing Techniques, and Main Applications.
    Santucci F; Lo Presti D; Massaroni C; Schena E; Setola R
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atrial fibrillation classification based on convolutional neural networks.
    Lee KS; Jung S; Gil Y; Son HS
    BMC Med Inform Decis Mak; 2019 Oct; 19(1):206. PubMed ID: 31664990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Smartphone-Only Pulse Transit Time Monitor Based on Cardio-Mechanical and Photoplethysmography Modalities.
    Yang C; Dong Y; Chen Y; Tavassolian N
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1462-1470. PubMed ID: 31443052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-classification of arrhythmias using a HCRNet on imbalanced ECG datasets.
    Luo X; Yang L; Cai H; Tang R; Chen Y; Li W
    Comput Methods Programs Biomed; 2021 Sep; 208():106258. PubMed ID: 34218172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detecting atrial fibrillation by deep convolutional neural networks.
    Xia Y; Wulan N; Wang K; Zhang H
    Comput Biol Med; 2018 Feb; 93():84-92. PubMed ID: 29291535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HADLN: Hybrid Attention-Based Deep Learning Network for Automated Arrhythmia Classification.
    Jiang M; Gu J; Li Y; Wei B; Zhang J; Wang Z; Xia L
    Front Physiol; 2021; 12():683025. PubMed ID: 34290619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Convolutional Neural Network-Based Hemiplegic Gait Detection Using an Inertial Sensor Located Freely in a Pocket.
    Shin H
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals.
    Faust O; Shenfield A; Kareem M; San TR; Fujita H; Acharya UR
    Comput Biol Med; 2018 Nov; 102():327-335. PubMed ID: 30031535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.