These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35413701)

  • 1. Overcoming temporal dispersion for measurement of activity-related impedance changes in unmyelinated nerves.
    Tarotin I; Mastitskaya S; Ravagli E; Perkins JD; Holder D; Aristovich K
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35413701
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of dispersion in nerve on compound action potential and impedance change: a modelling study.
    Tarotin I; Aristovich K; Holder D
    Physiol Meas; 2019 Mar; 40(3):034001. PubMed ID: 30786268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimisation of bioimpedance measurements of neuronal activity with an ex vivo preparation of Cancer pagurus peripheral nerves.
    Chapman CAR; Smith TM; Kelly M; Avery J; Rouanet T; Aristovich K; Chew DJ; Holder DS
    J Neurosci Methods; 2019 Nov; 327():108322. PubMed ID: 31419473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of impedance changes with a FEM model of a myelinated nerve fibre.
    Tarotin I; Aristovich K; Holder D
    J Neural Eng; 2019 Sep; 16(5):056026. PubMed ID: 31242469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of Impedance Changes in Unmyelinated Nerve Fibers.
    Tarotin I; Aristovich K; Holder D
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):471-484. PubMed ID: 29993457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of electrical impedance tomography implemented in nerve-cuff for neural-prosthetics control.
    Hope J; Vanholsbeeck F; McDaid A
    Physiol Meas; 2018 Apr; 39(4):044002. PubMed ID: 29547133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the electrode drive pattern for imaging fascicular compound action potentials in peripheral nerve with fast neural electrical impedance tomography.
    Ravagli E; Mastitskaya S; Thompson N; Aristovich K; Holder D
    Physiol Meas; 2019 Dec; 40(11):115007. PubMed ID: 31694004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional monitoring of peripheral nerves from electrical impedance measurements.
    Fouchard A; Coizet V; Sinniger V; Clarençon D; Pernet-Gallay K; Bonnet S; David O
    J Physiol Paris; 2016 Nov; 110(4 Pt A):361-371. PubMed ID: 28564589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fascicle localisation within peripheral nerves through evoked activity recordings: A comparison between electrical impedance tomography and multi-electrode arrays.
    Ravagli E; Mastitskaya S; Thompson N; Welle EJ; Chestek CA; Aristovich K; Holder D
    J Neurosci Methods; 2021 Jul; 358():109140. PubMed ID: 33774053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces.
    Eiber CD; Payne SC; Biscola NP; Havton LA; Keast JR; Osborne PB; Fallon JB
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34740201
    [No Abstract]   [Full Text] [Related]  

  • 11. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for recording resistance changes non-invasively during neuronal depolarization with a view to imaging brain activity with electrical impedance tomography.
    Gilad O; Ghosh A; Oh D; Holder DS
    J Neurosci Methods; 2009 May; 180(1):87-96. PubMed ID: 19427534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microchannels as axonal amplifiers.
    Fitzgerald JJ; Lacour SP; McMahon SB; Fawcett JW
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1136-46. PubMed ID: 18334406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging fast neural traffic at fascicular level with electrical impedance tomography: proof of principle in rat sciatic nerve.
    Aristovich K; Donegá M; Blochet C; Avery J; Hannan S; Chew DJ; Holder D
    J Neural Eng; 2018 Oct; 15(5):056025. PubMed ID: 30070261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog.
    Yoo PB; Lubock NB; Hincapie JG; Ruble SB; Hamann JJ; Grill WM
    J Neural Eng; 2013 Apr; 10(2):026003. PubMed ID: 23370017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spinal nerve root distribution of the myelinated and unmyelinated nerve fibers of a cat cutaneous nerve].
    Shaposhnikov VL
    Neirofiziologiia; 1975; 7(6):647-54. PubMed ID: 1207848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anodally focused polarization of peripheral nerve allows discrimination of myelinated and unmyelinated fiber input to brainstem nuclei.
    Petruska JC; Hubscher CH; Johnson RD
    Exp Brain Res; 1998 Aug; 121(4):379-90. PubMed ID: 9746144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging fascicular organization of rat sciatic nerves with fast neural electrical impedance tomography.
    Ravagli E; Mastitskaya S; Thompson N; Iacoviello F; Shearing PR; Perkins J; Gourine AV; Aristovich K; Holder D
    Nat Commun; 2020 Dec; 11(1):6241. PubMed ID: 33288760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Afferent activity in fine myelinated and unmyelinated nerve fibers of a cutaneous nerve upon mechanical stimulation of cutaneous receptors].
    Shaposhnikov VL; Zebeke AV
    Neirofiziologiia; 1976; 8(1):67-75. PubMed ID: 1264294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.