BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35414048)

  • 1. Multi-Objective Optimization of Bioresorbable Magnesium Alloy Stent by Kriging Surrogate Model.
    Wang H; Jiao L; Sun J; Yan P; Wang X; Qiu T
    Cardiovasc Eng Technol; 2022 Dec; 13(6):829-839. PubMed ID: 35414048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-objective optimization of coronary stent using Kriging surrogate model.
    Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element shape optimization for biodegradable magnesium alloy stents.
    Wu W; Petrini L; Gastaldi D; Villa T; Vedani M; Lesma E; Previtali B; Migliavacca F
    Ann Biomed Eng; 2010 Sep; 38(9):2829-40. PubMed ID: 20446037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analyses for optimization design of biodegradable magnesium alloy stent.
    Li J; Zheng F; Qiu X; Wan P; Tan L; Yang K
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():705-14. PubMed ID: 25063172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-objective design optimization of bioresorbable braided stents.
    Carbonaro D; Lucchetti A; Audenino AL; Gries T; Vaughan TJ; Chiastra C
    Comput Methods Programs Biomed; 2023 Dec; 242():107781. PubMed ID: 37683458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Finite element analysis for compression and expansion behavior of magnesium stent].
    Chen H; Liu X; Yuan G; Zhang L; Li Z; Luo Q; Lin F
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 May; 38(3):161-4, 176. PubMed ID: 25241506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel double arrowhead auxetic coronary stent.
    Gupta K; Meena K
    Comput Biol Med; 2023 Nov; 166():107525. PubMed ID: 37778216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent].
    Wang X; Cui F; Li J; Zhao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):338-41. PubMed ID: 19499798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Objective Optimization Design of Balloon-Expandable Coronary Stent.
    Shen X; Zhu H; Jiang J; Deng Y; Ji S
    Cardiovasc Eng Technol; 2019 Mar; 10(1):10-21. PubMed ID: 30673977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element simulation and optimization of mechanical performance of the magnesium-alloy biliary stent.
    Zhang Y; Ni X; Pan C
    Int J Numer Method Biomed Eng; 2022 May; 38(5):e3592. PubMed ID: 35293160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning.
    Kumar A; Bhatnagar N
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Objective Optimizations of Biodegradable Polymer Stent Structure and Stent Microinjection Molding Process.
    Li H; Wang X; Wei Y; Liu T; Gu J; Li Z; Wang M; Zhao D; Qiao A; Liu Y
    Polymers (Basel); 2017 Jan; 9(1):. PubMed ID: 30970706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational micromechanics of bioabsorbable magnesium stents.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2014 Jun; 34():93-105. PubMed ID: 24566380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on large elastoplastic deformation in expansion and springback for a composited bioresorbable stent.
    Chen Y; Shang X
    J Mech Behav Biomed Mater; 2021 Jul; 119():104500. PubMed ID: 33894526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-objective optimization of nitinol stent design.
    Alaimo G; Auricchio F; Conti M; Zingales M
    Med Eng Phys; 2017 Sep; 47():13-24. PubMed ID: 28705512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical behavior of coronary stents investigated through the finite element method.
    Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R
    J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural optimization and finite element analysis of poly-l-lactide acid coronary stent with improved radial strength and acute recoil rate.
    Song K; Bi Y; Zhao H; Wu T; Xu F; Zhao G
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2754-2764. PubMed ID: 32154984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.