These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35414048)

  • 21. A biodegradable magnesium alloy vascular stent structure: Design, optimisation and evaluation.
    Li Y; Wang Y; Shen Z; Miao F; Wang J; Sun Y; Zhu S; Zheng Y; Guan S
    Acta Biomater; 2022 Apr; 142():402-412. PubMed ID: 35085798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating the Equivalent Plastic Strain in a Variable Ring Length and Strut Width Thin-Strut Bioresorbable Scaffold.
    Hoddy B; Ahmed N; Al-Lamee K; Bullett N; Curzen N; Bressloff NW
    Cardiovasc Eng Technol; 2022 Dec; 13(6):899-914. PubMed ID: 35819580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Finite element analysis of the expansion behavior of coronary stents].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1258-62, 1266. PubMed ID: 17228721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing the design of a bioabsorbable metal stent using computer simulation methods.
    Grogan JA; Leen SB; McHugh PE
    Biomaterials; 2013 Nov; 34(33):8049-60. PubMed ID: 23906516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiobjective design optimization of stent geometry with wall deformation for triangular and rectangular struts.
    Putra NK; Palar PS; Anzai H; Shimoyama K; Ohta M
    Med Biol Eng Comput; 2019 Jan; 57(1):15-26. PubMed ID: 29967933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative reliability and performance study of different stent designs in terms of mechanical properties: foreshortening, recoil, radial force, and flexibility.
    Kim DB; Choi H; Joo SM; Kim HK; Shin JH; Hwang MH; Choi J; Kim DG; Lee KH; Lim CH; Yoo SK; Lee HM; Sun K
    Artif Organs; 2013 Apr; 37(4):368-79. PubMed ID: 23461583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A numerical corrosion-fatigue model for biodegradable Mg alloy stents.
    Shen Z; Zhao M; Zhou X; Yang H; Liu J; Guo H; Zheng Y; Yang JA
    Acta Biomater; 2019 Oct; 97():671-680. PubMed ID: 31394294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A computational optimization study of a self-expandable transcatheter aortic valve.
    Barati S; Fatouraee N; Nabaei M; Berti F; Petrini L; Migliavacca F; Rodriguez Matas JF
    Comput Biol Med; 2021 Dec; 139():104942. PubMed ID: 34700254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion.
    Lim D; Cho SK; Park WP; Kristensson A; Ko JY; Al-Hassani ST; Kim HS
    Ann Biomed Eng; 2008 Jul; 36(7):1118-29. PubMed ID: 18437572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico fatigue optimization of TAVR stent designs with physiological motion in a beating heart model.
    Baylous K; Helbock R; Kovarovic B; Anam S; Slepian M; Bluestein D
    Comput Methods Programs Biomed; 2024 Jan; 243():107886. PubMed ID: 37925854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantitative study on magnesium alloy stent biodegradation.
    Gao Y; Wang L; Gu X; Chu Z; Guo M; Fan Y
    J Biomech; 2018 Jun; 74():98-105. PubMed ID: 29735265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticles-reinforced poly-l-lactic acid composite materials as bioresorbable scaffold candidates for coronary stents: Insights from mechanical and finite element analysis.
    Toong DWY; Ng JCK; Cui F; Leo HL; Zhong L; Lian SS; Venkatraman S; Tan LP; Huang YY; Ang HY
    J Mech Behav Biomed Mater; 2022 Jan; 125():104977. PubMed ID: 34814078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents.
    Wu W; Chen S; Gastaldi D; Petrini L; Mantovani D; Yang K; Tan L; Migliavacca F
    Acta Biomater; 2013 Nov; 9(10):8730-9. PubMed ID: 23128160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-objective optimisation of material properties and strut geometry for poly(L-lactic acid) coronary stents using response surface methodology.
    Blair RW; Dunne NJ; Lennon AB; Menary GH
    PLoS One; 2019; 14(8):e0218768. PubMed ID: 31449528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Optimization based on finite element technique of nitinol stent].
    Lin F; Liu X; Huang N; Gao Q; Li Z; Yao T; Luo Q; Huang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 Mar; 38(2):98-101. PubMed ID: 24941770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The platinum chromium element stent platform: from alloy, to design, to clinical practice.
    Menown IB; Noad R; Garcia EJ; Meredith I
    Adv Ther; 2010 Mar; 27(3):129-41. PubMed ID: 20437213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental and Numerical Simulation of Biodegradable Stents with Different Strut Geometries.
    Chen C; Xiong Y; Jiang W; Wang Y; Wang Z; Chen Y
    Cardiovasc Eng Technol; 2020 Feb; 11(1):36-46. PubMed ID: 31664685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents.
    Galvin E; Cummins C; Yoshihara S; Mac Donald BJ; Lally C
    Med Biol Eng Comput; 2017 Aug; 55(8):1261-1275. PubMed ID: 27785607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure design and mechanical performance analysis of three kinds of bioresorbable poly-lactic acid (PLA) stents.
    Wang Y; Wu H; Fan S; Wu J; Yang S
    Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):25-37. PubMed ID: 35341394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A strain-mediated corrosion model for bioabsorbable metallic stents.
    Galvin E; O'Brien D; Cummins C; Mac Donald BJ; Lally C
    Acta Biomater; 2017 Jun; 55():505-517. PubMed ID: 28433790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.