These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 35414065)
1. QSAR analysis on a large and diverse set of potent phosphoinositide 3-kinase gamma (PI3Kγ) inhibitors using MLR and ANN methods. Sadeghi F; Afkhami A; Madrakian T; Ghavami R Sci Rep; 2022 Apr; 12(1):6090. PubMed ID: 35414065 [TBL] [Abstract][Full Text] [Related]
2. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents. Ahmadi S; Habibpour E Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182 [TBL] [Abstract][Full Text] [Related]
3. Discovery of nanomolar phosphoinositide 3-kinase gamma (PI3Kγ) inhibitors using ligand-based modeling and virtual screening followed by in vitro analysis. Taha MO; Al-Sha'er MA; Khanfar MA; Al-Nadaf AH Eur J Med Chem; 2014 Sep; 84():454-65. PubMed ID: 25050878 [TBL] [Abstract][Full Text] [Related]
4. Computational study on subfamilies of piperidine derivatives: QSAR modelling, model external verification, the inter-subset similarity determination, and structure-based drug designing. Sadeghi F; Afkhami A; Madrakian T; Ghavami R SAR QSAR Environ Res; 2021 Jun; 32(6):433-462. PubMed ID: 33960256 [TBL] [Abstract][Full Text] [Related]
5. Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques. Roy K; Pratim Roy P Eur J Med Chem; 2009 Jul; 44(7):2913-22. PubMed ID: 19128860 [TBL] [Abstract][Full Text] [Related]
6. Rational Design of a Low-Data Regime of Pyrrole Antioxidants for Radical Scavenging Activities Using Quantum Chemical Descriptors and QSAR with the GA-MLR and ANN Concepts. Xie W; Wiriyarattanakul S; Rungrotmongkol T; Shi L; Wiriyarattanakul A; Maitarad P Molecules; 2023 Feb; 28(4):. PubMed ID: 36838583 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds. Ventura C; Latino DA; Martins F Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731 [TBL] [Abstract][Full Text] [Related]
8. Development of linear and nonlinear predictive QSAR models and their external validation using molecular similarity principle for anti-HIV indolyl aryl sulfones. Roy K; Mandal AS J Enzyme Inhib Med Chem; 2008 Dec; 23(6):980-95. PubMed ID: 18608761 [TBL] [Abstract][Full Text] [Related]
9. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study. Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843 [TBL] [Abstract][Full Text] [Related]
10. QSAR Modeling of the Arylthioindole Class of Colchicine Polymerization Inhibitors as Anticancer Agents. Habibpour E; Ahmadi S Curr Comput Aided Drug Des; 2017; 13(2):143-159. PubMed ID: 28120704 [TBL] [Abstract][Full Text] [Related]
11. Predictive QSAR modeling of CCR5 antagonist piperidine derivatives using chemometric tools. Roy K; Mandal AS J Enzyme Inhib Med Chem; 2009 Feb; 24(1):205-23. PubMed ID: 18608745 [TBL] [Abstract][Full Text] [Related]
12. Quantitative structure activities relationships of some 2-mercaptoimidazoles as CCR2 inhibitors using genetic algorithm-artificial neural networks. Saghaie L; Shahlaei M; Fassihi A Res Pharm Sci; 2013 Apr; 8(2):97-112. PubMed ID: 24019819 [TBL] [Abstract][Full Text] [Related]
13. Comparison of QSAR models based on combinations of genetic algorithm, stepwise multiple linear regression, and artificial neural network methods to predict Kd of some derivatives of aromatic sulfonamides as carbonic anhydrase II inhibitors. Maleki A; Daraei H; Alaei L; Faraji A Bioorg Khim; 2014; 40(1):70-84. PubMed ID: 25898725 [TBL] [Abstract][Full Text] [Related]
14. Genetic Algorithm and Self-Organizing Maps for QSPR Study of Some N-aryl Derivatives as Butyrylcholinesterase Inhibitors. Ahmadi S; Ganji S Curr Drug Discov Technol; 2016; 13(4):232-253. PubMed ID: 27457492 [TBL] [Abstract][Full Text] [Related]
15. Structural Relationship Study of Octanol-Water Partition Coefficient of Some Sulfa Drugs Using GA-MLR and GA-ANN Methods. Dadfar E; Shafiei F; Isfahani TM Curr Comput Aided Drug Des; 2020; 16(3):207-221. PubMed ID: 32507103 [TBL] [Abstract][Full Text] [Related]
16. QSAR of antitrypanosomal activities of polyphenols and their analogues using multiple linear regression and artificial neural networks. Rastija V; Masand VH Comb Chem High Throughput Screen; 2014; 17(8):709-17. PubMed ID: 25092383 [TBL] [Abstract][Full Text] [Related]
17. New Research for Quinazoline-2,4-diones as HPPD Inhibitors Based on 2D-MLR and 3D-QSAR Models. Fu Y; Sun YN; Cao HF; Yi KH; Zhao LX; Li JZ; Ye F Comb Chem High Throughput Screen; 2017; 20(9):748-759. PubMed ID: 28637410 [TBL] [Abstract][Full Text] [Related]
18. QSAR Models for Predicting Aquatic Toxicity of Esters Using Genetic Algorithm-Multiple Linear Regression Methods. Rajabi M; Shafiei F Comb Chem High Throughput Screen; 2019 Aug; 22(5):317-325. PubMed ID: 31215375 [TBL] [Abstract][Full Text] [Related]
19. Hybrid docking-QSAR studies of DPP-IV inhibition activities of a series of aminomethyl-piperidones. Amini Z; Fatemi MH; Gharaghani S Comput Biol Chem; 2016 Oct; 64():335-345. PubMed ID: 27570070 [TBL] [Abstract][Full Text] [Related]
20. Developing a Naïve Bayesian Classification Model with PI3Kγ structural features for virtual screening against PI3Kγ: Combining molecular docking and pharmacophore based on multiple PI3Kγ conformations. Jiang Y; Xiong W; Jia L; Xu L; Cai Y; Chen Y; Jin J; Gao M; Zhu J Eur J Med Chem; 2022 Dec; 244():114824. PubMed ID: 36257282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]