These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35414161)
21. Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. Che W; Shi T; Wu Y; Yang Y J Econ Entomol; 2013 Aug; 106(4):1855-62. PubMed ID: 24020303 [TBL] [Abstract][Full Text] [Related]
22. Control efficacy and joint toxicity of metaflumizone mixed with chlorantraniliprole or indoxacarb against the fall armyworm, Spodoptera frugiperda. Wu YJ; Wang BJ; Wang MR; Peng YC; Cao HQ; Sheng CW Pest Manag Sci; 2023 Mar; 79(3):1094-1101. PubMed ID: 36334007 [TBL] [Abstract][Full Text] [Related]
23. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua. Zuo YY; Huang JL; Wang J; Feng Y; Han TT; Wu YD; Yang YH Insect Mol Biol; 2018 Feb; 27(1):36-45. PubMed ID: 28753233 [TBL] [Abstract][Full Text] [Related]
24. Broflanilide effectively controls Helicoverpa armigera and Spodoptera exigua exhibiting diverse susceptibilities to chlorantraniliprole and emamectin benzoate. Tang T; Hu F; Wang P; Fu W; Liu X Pest Manag Sci; 2021 Mar; 77(3):1262-1272. PubMed ID: 33063419 [TBL] [Abstract][Full Text] [Related]
25. Insecticidal and growth inhibitory effects of some thymol derivatives on the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) and their impact on detoxification enzymes. Pengsook A; Tharamak S; Keosaeng K; Koul O; Bullangpoti V; Kumrungsee N; Pluempanupat W Pest Manag Sci; 2022 Feb; 78(2):684-691. PubMed ID: 34647408 [TBL] [Abstract][Full Text] [Related]
26. Monitoring of beet armyworm resistance to spinosad and methoxyfenozide in Mexico. Osorio A; Martínez AM; Schneider MI; Díaz O; Corrales JL; Avilés MC; Smagghe G; Pineda S Pest Manag Sci; 2008 Oct; 64(10):1001-7. PubMed ID: 18418831 [TBL] [Abstract][Full Text] [Related]
27. Efficacy of some plant oils alone and/or combined with different insecticides on the cotton leaf-worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt. Mesbah HA; Mourad AK; Rokaia AZ Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):305-28. PubMed ID: 17385497 [TBL] [Abstract][Full Text] [Related]
28. DIMBOA-induced gene expression, activity profiles of detoxification enzymes, multi-resistance mechanisms, and increased resistance to indoxacarb in tobacco cutworm, Spodoptera litura (Fabricius). Yang X; Hafeez M; Chen HY; Li WT; Ren RJ; Luo YS; Abdellah YAY; Wang RL Ecotoxicol Environ Saf; 2023 Nov; 267():115669. PubMed ID: 37944464 [TBL] [Abstract][Full Text] [Related]
29. Assessment of resistance risk in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Lai T; Su J Pest Manag Sci; 2011 Nov; 67(11):1468-72. PubMed ID: 21594963 [TBL] [Abstract][Full Text] [Related]
30. Chemical control of polyphagous pests on their auxiliary hosts can minimize insecticide resistance: A case study of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) in cotton agroecosystem. Saeed Q; Ahmad F; Iqbal N; Zaka SM Ecotoxicol Environ Saf; 2019 Apr; 171():721-727. PubMed ID: 30658308 [TBL] [Abstract][Full Text] [Related]
31. Action of major insecticide groups on insect cell lines of the beet armyworm, Spodoptera exigua, compared with larvicidal toxicity. Decombel L; Smagghe G; Tirry L In Vitro Cell Dev Biol Anim; 2004; 40(1-2):43-51. PubMed ID: 14753848 [TBL] [Abstract][Full Text] [Related]
32. Biological and physiological responses of two Bradysia pests, Bradysia odoriphaga and Bradysia difformis, to Dinotefuran and Lufenuron. Zhu G; Ding W; Zhao Y; Xue M; Zhao H; Liu S Pestic Biochem Physiol; 2023 Feb; 190():105338. PubMed ID: 36740337 [TBL] [Abstract][Full Text] [Related]
33. Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae), with special reference to diamides. Huang JM; Zhao YX; Sun H; Ni H; Liu C; Wang X; Gao CF; Wu SF Pestic Biochem Physiol; 2021 May; 174():104831. PubMed ID: 33838702 [TBL] [Abstract][Full Text] [Related]
34. Functional analysis of CYP6AE68, a cytochrome P450 gene associated with indoxacarb resistance in Spodoptera litura (Lepidoptera: Noctuidae). Hou WT; Staehelin C; Elzaki MEA; Hafeez M; Luo YS; Wang RL Pestic Biochem Physiol; 2021 Oct; 178():104946. PubMed ID: 34446184 [TBL] [Abstract][Full Text] [Related]
35. Cross-resistance and genetics of resistance to indoxacarb in Spodoptera litura (Lepidoptera: Noctuidae). Sayyed AH; Ahmad M; Saleem MA J Econ Entomol; 2008 Apr; 101(2):472-9. PubMed ID: 18459413 [TBL] [Abstract][Full Text] [Related]
36. Toxicity of indoxacarb and spinosad to the multicolored Asian lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), via three routes of exposure. Galvan TL; Koch RL; Hutchison WD Pest Manag Sci; 2006 Sep; 62(9):797-804. PubMed ID: 16794989 [TBL] [Abstract][Full Text] [Related]
37. Side effects of two reduced-risk insecticides, indoxacarb and spinosad, on two species of Trichogramma (Hymenoptera: Trichogrammatidae) on cabbage. Liu TX; Zhang Y Ecotoxicology; 2012 Nov; 21(8):2254-63. PubMed ID: 23010868 [TBL] [Abstract][Full Text] [Related]
38. Expression and functional analysis of P450 gene induced tolerance/resistance to lambda-cyhalothrin in quercetin fed larvae of beet armyworm Hafeez M; Qasim M; Ali S; Yousaf HK; Waqas M; Ali E; Ahmad MA; Jan S; Bashir MA; Noman A; Wang M; Gharmh HA; Khan KA Saudi J Biol Sci; 2020 Jan; 27(1):77-87. PubMed ID: 31889821 [TBL] [Abstract][Full Text] [Related]
39. Switching among natal and auxiliary hosts increases vulnerability of Saeed Q; Saeed S; Ahmad F Ecol Evol; 2017 Apr; 7(8):2725-2734. PubMed ID: 28428863 [TBL] [Abstract][Full Text] [Related]
40. Identification and Functional Analysis of a Novel Cytochrome P450 Gene CYP9A105 Associated with Pyrethroid Detoxification in Spodoptera exigua Hübner. Wang RL; Liu SW; Baerson SR; Qin Z; Ma ZH; Su YJ; Zhang JE Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29510578 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]