BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35414974)

  • 1. Elimination of stripe artifacts in light sheet fluorescence microscopy using an attention-based residual neural network.
    Wei Z; Wu X; Tong W; Zhang S; Yang X; Tian J; Hui H
    Biomed Opt Express; 2022 Mar; 13(3):1292-1311. PubMed ID: 35414974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stripe artifact elimination based on nonsubsampled contourlet transform for light sheet fluorescence microscopy.
    Liang X; Zang Y; Dong D; Zhang L; Fang M; Yang X; Arranz A; Ripoll J; Hui H; Tian J
    J Biomed Opt; 2016 Oct; 21(10):106005. PubMed ID: 27784051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stripe artifact reduction for digital scanned structured illumination light sheet microscopy.
    Liu Y; Lauderdale JD; Kner P
    Opt Lett; 2019 May; 44(10):2510-2513. PubMed ID: 31090719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distortion Correction and Denoising of Light Sheet Fluorescence Images.
    Julia A; Iguernaissi R; Michel FJ; Matarazzo V; Merad D
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DRSNFuse: Deep Residual Shrinkage Network for Infrared and Visible Image Fusion.
    Wang H; Wang J; Xu H; Sun Y; Yu Z
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multidirectional digital scanned light-sheet microscopy enables uniform fluorescence excitation and contrast-enhanced imaging.
    Glaser AK; Chen Y; Yin C; Wei L; Barner LA; Reder NP; Liu JTC
    Sci Rep; 2018 Sep; 8(1):13878. PubMed ID: 30224740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removing striping artifacts in light-sheet fluorescence microscopy: a review.
    Ricci P; Gavryusev V; Müllenbroich C; Turrini L; de Vito G; Silvestri L; Sancataldo G; Pavone FS
    Prog Biophys Mol Biol; 2022 Jan; 168():52-65. PubMed ID: 34274370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automated method for removal of striping artifacts in fluorescent whole-slide microscopy.
    Pollatou A
    J Neurosci Methods; 2020 Jul; 341():108781. PubMed ID: 32497677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destriping of Remote Sensing Images by an Optimized Variational Model.
    Yan F; Wu S; Zhang Q; Liu Y; Sun H
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential vessel segmentation via deep channel attention network.
    Hao D; Ding S; Qiu L; Lv Y; Fei B; Zhu Y; Qin B
    Neural Netw; 2020 Aug; 128():172-187. PubMed ID: 32447262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse-domain regularized stripe decomposition combined with guided-image filtering for ring artifact removal in propagation-based x-ray phase-contrast CT.
    Li Y; Zhao Y; Ji D; Lv W; Xin X; Zhao X; Liu D; Ouyang Z; Hu C
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33878737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffuse light-sheet microscopy for stripe-free calcium imaging of neural populations.
    Taylor MA; Vanwalleghem GC; Favre-Bulle IA; Scott EK
    J Biophotonics; 2018 Dec; 11(12):e201800088. PubMed ID: 29920963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rigid and non-rigid motion artifact reduction in X-ray CT using attention module.
    Ko Y; Moon S; Baek J; Shim H
    Med Image Anal; 2021 Jan; 67():101883. PubMed ID: 33166775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative stripe artifact correction framework for TOF-MRA.
    Li N; Zhou S; Zhao G; Zhang Z; Xie Y; Liang X
    Comput Biol Med; 2021 Jul; 134():104456. PubMed ID: 34010790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stripe and ring artifact removal with combined wavelet--Fourier filtering.
    Münch B; Trtik P; Marone F; Stampanoni M
    Opt Express; 2009 May; 17(10):8567-91. PubMed ID: 19434191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Note: Eliminating stripe artifacts in light-sheet fluorescence imaging.
    Salili SM; Harrington M; Durian DJ
    Rev Sci Instrum; 2018 Mar; 89(3):036107. PubMed ID: 29604752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based autofocus method enhances image quality in light-sheet fluorescence microscopy.
    Li C; Moatti A; Zhang X; Troy Ghashghaei H; Greenabum A
    Biomed Opt Express; 2021 Aug; 12(8):5214-5226. PubMed ID: 34513252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Method of CT Image Denoising Based on Residual Encoder-Decoder Network.
    Liu Y
    J Healthc Eng; 2021; 2021():2384493. PubMed ID: 34603643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.