These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35415011)

  • 1. Antagonistic co-contraction can minimize muscular effort in systems with uncertainty.
    Koelewijn AD; Van Den Bogert AJ
    PeerJ; 2022; 10():e13085. PubMed ID: 35415011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise.
    Van Wouwe T; Ting LH; De Groote F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009338. PubMed ID: 35675227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trainability of muscular activity level during maximal voluntary co-contraction: comparison between bodybuilders and nonathletes.
    Maeo S; Takahashi T; Takai Y; Kanehisa H
    PLoS One; 2013; 8(11):e79486. PubMed ID: 24260233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational evidence for nonlinear feedforward modulation of fusimotor drive to antagonistic co-contracting muscles.
    Hardesty RL; Boots MT; Yakovenko S; Gritsenko V
    Sci Rep; 2020 Jun; 10(1):10625. PubMed ID: 32606297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint angle control by FES using a feedback error learning controller.
    Kurosawa K; Futami R; Watanabe T; Hoshimiya N
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):359-71. PubMed ID: 16200759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedance Control of Human Ankle Joint With Electrically Stimulated Antagonistic Muscle Co-Contraction.
    Kim J; Moon JH; Kim J
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1593-1603. PubMed ID: 34379593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensatory strategies during walking in response to excessive muscle co-contraction at the ankle joint.
    Wang R; Gutierrez-Farewik EM
    Gait Posture; 2014 Mar; 39(3):926-32. PubMed ID: 24374063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of non-extensor muscles of the leg to maximal-effort countermovement jumping.
    Nagano A; Komura T; Yoshioka S; Fukashiro S
    Biomed Eng Online; 2005 Sep; 4():52. PubMed ID: 16143047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-contraction characteristics of lumbar muscles in patients with lumbar disc herniation during different types of movement.
    Du W; Li H; Omisore OM; Wang L; Chen W; Sun X
    Biomed Eng Online; 2018 Jan; 17(1):8. PubMed ID: 29361944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictions of antagonistic muscular activity using nonlinear optimization.
    Herzog W; Binding P
    Math Biosci; 1992 Oct; 111(2):217-29. PubMed ID: 1515744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscular co-contraction covaries with task load to control the flow of motion in fine motor tasks.
    Meulenbroek RG; Van Galen GP; Hulstijn M; Hulstijn W; Bloemsaat G
    Biol Psychol; 2005 Mar; 68(3):331-52. PubMed ID: 15620798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal impedance control for task achievement in the presence of signal-dependent noise.
    Osu R; Kamimura N; Iwasaki H; Nakano E; Harris CM; Wada Y; Kawato M
    J Neurophysiol; 2004 Aug; 92(2):1199-215. PubMed ID: 15056685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of reflex gain and reflex delay in spinal stability--a dynamic simulation.
    Franklin TC; Granata KP
    J Biomech; 2007; 40(8):1762-7. PubMed ID: 17054964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-contraction recruitment and spinal load during isometric trunk flexion and extension.
    Granata KP; Lee PE; Franklin TC
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1029-37. PubMed ID: 16154249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of contraction history on control and stability in explosive actions.
    Ettema GJ
    J Electromyogr Kinesiol; 2002 Dec; 12(6):455-61. PubMed ID: 12435542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proportional Myoelectric Control of a Virtual Inverted Pendulum Using Residual Antagonistic Muscles: Toward Voluntary Postural Control.
    Fleming A; Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1473-1482. PubMed ID: 31180864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postural Sway and Muscle Activity Dynamics of Upright Standing on Sloped Surfaces.
    Baldridge J; King AC
    Motor Control; 2022 Oct; 26(4):591-607. PubMed ID: 35894905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts.
    McKay JL; Ting LH
    PLoS Comput Biol; 2012; 8(4):e1002465. PubMed ID: 22511857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human energy - optimal control of disturbance rejection during constrained standing.
    Mihelj M; Munih M; Ponikvar M
    J Med Eng Technol; 2003; 27(5):223-32. PubMed ID: 12936049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trunk muscular activation patterns and responses to transient force perturbation in persons with self-reported low back pain.
    Stokes IA; Fox JR; Henry SM
    Eur Spine J; 2006 May; 15(5):658-67. PubMed ID: 15906102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.