BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35415367)

  • 1. Experimental Investigation on the Pore Structure Evolution of Coal in Underground Coal Gasification Process.
    Zhao B; Dong X; Chen Y; Chen S; Chen Z; Peng Y; Liu Y; Jiang X
    ACS Omega; 2022 Apr; 7(13):11252-11263. PubMed ID: 35415367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring the gasification area and its behavior in underground coal gasification by acoustic emission technique instead of temperature measurement.
    Hamanaka A; Ishii Y; Itakura KI; Sasaoka T; Shimada H; Widodo NP; Sulistianto B; Kodama JI; Deguchi G
    Sci Rep; 2023 Jun; 13(1):9757. PubMed ID: 37328489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure Characterization and CO
    Liu L; Kong B; Jiao Q; Yang J; Liu Q; Liu X
    ACS Omega; 2019 Nov; 4(21):19030-19036. PubMed ID: 31763525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Pressurized Pyrolysis on the Chemical and Porous Structure Evolution of Coal Core during Deep Underground Coal Gasification.
    Niu M; Xin L; Cheng W; Liu S; Wang B; Xu W
    ACS Omega; 2023 Oct; 8(43):40153-40161. PubMed ID: 37929149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the evolution of pore structure during the preparation of activated carbon from Zhundong high-alkali coal based on gas-solid diffusion and activation reactions.
    Liang D; Xie Q; Liu J; Xie F; Liu D; Wan C
    RSC Adv; 2020 Sep; 10(55):33566-33575. PubMed ID: 35515053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO
    Liu L; Kong B; Yang J; Liu Q; Liu X
    ACS Omega; 2020 Jan; 5(1):507-517. PubMed ID: 31956797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gasification reactivity of co-pyrolysis char from coal blended with corn stalks.
    Chen X; Liu L; Zhang L; Zhao Y; Qiu P
    Bioresour Technol; 2019 May; 279():243-251. PubMed ID: 30735934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of minerals on transformation of sulfur during pyrolysis and partial gasification].
    Li B; Du XR; Li QF; Zhang JM; Wang Y
    Huan Jing Ke Xue; 2004 Jan; 25(1):149-53. PubMed ID: 15330442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Test of Combustion Cavity Growth during Underground Coal Gasification in the Early Stage of Ignition.
    Xin L; Wang B; Li J; Niu M; Shang Z; Xu W; Wang X; Li H
    ACS Omega; 2024 Jan; 9(3):3691-3700. PubMed ID: 38284004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.
    Niu M; Dong Q; Huang Y; Jin B; Wang H; Gu H
    Waste Manag Res; 2018 May; 36(5):415-425. PubMed ID: 29584586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere.
    Zaini IN; García López C; Pretz T; Yang W; Jönsson PG
    Waste Manag; 2019 Sep; 97():149-163. PubMed ID: 31447022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical evolution during rice straw and coal co-pyrolysis and its effect on co-gasification reactivity.
    Wei J; Gong Y; Guo Q; Ding L; Wang F; Yu G
    Bioresour Technol; 2017 Mar; 227():345-352. PubMed ID: 28042990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ sorption phenomena can mitigate potential negative environmental effects of underground coal gasification (UCG) - an experimental study of phenol removal on UCG-derived residues in the aspect of contaminant retardation.
    Strugała-Wilczek A; Basa W; Kapusta K; Soukup K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111710. PubMed ID: 33396041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review.
    Hu J; Sun Q; He H
    Environ Sci Pollut Res Int; 2018 May; 25(14):13470-13478. PubMed ID: 29644607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the migration of organic contaminants in laboratory-scale groundwater polluted by underground coal gasification.
    Wang F; Chen L; Xu B; Ma J; Xing B; Su F; Shi C
    Environ Sci Pollut Res Int; 2024 May; 31(23):34446-34458. PubMed ID: 38703318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Electrochemical Catalytic Coal Gasification: Gasification Characteristics and Char Structure Evolution.
    Yang F; Yu Q; Duan W; Qi Z; Qin Q
    ACS Omega; 2021 Nov; 6(46):31026-31036. PubMed ID: 34841145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Simulation of the Temperature Distribution and Evolution Law of Underground Lignite Gasification.
    Zhou H; Wu C; Chen H; Du M; Wang Z; Jiang X
    ACS Omega; 2022 Mar; 7(8):6885-6899. PubMed ID: 35252681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the evolution of the pore structure of low rank coal during spontaneous combustion.
    Wang H; Li J; Zhang Y; Wu Y; Wang Z
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39932-39945. PubMed ID: 36602744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption characteristics of rocks and soils, and their potential for mitigating the environmental impact of underground coal gasification technology: A review.
    An N; Zagorščak R; Thomas HR
    J Environ Manage; 2022 Mar; 305():114390. PubMed ID: 34999446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NH3 formation and destruction during the gasification of coal in oxygen and steam.
    Mckenzie LJ; Tian FJ; Li CZ
    Environ Sci Technol; 2007 Aug; 41(15):5505-9. PubMed ID: 17822124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.