These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35415401)
1. Detecting Adverse Drug Reactions on Twitter with Convolutional Neural Networks and Word Embedding Features. Masino AJ; Forsyth D; Fiks AG J Healthc Inform Res; 2018 Jun; 2(1-2):25-43. PubMed ID: 35415401 [TBL] [Abstract][Full Text] [Related]
2. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. Cocos A; Fiks AG; Masino AJ J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747 [TBL] [Abstract][Full Text] [Related]
3. Classifying adverse drug reactions from imbalanced twitter data. Dai HJ; Wang CK Int J Med Inform; 2019 Sep; 129():122-132. PubMed ID: 31445246 [TBL] [Abstract][Full Text] [Related]
4. Public Perception Analysis of Tweets During the 2015 Measles Outbreak: Comparative Study Using Convolutional Neural Network Models. Du J; Tang L; Xiang Y; Zhi D; Xu J; Song HY; Tao C J Med Internet Res; 2018 Jul; 20(7):e236. PubMed ID: 29986843 [TBL] [Abstract][Full Text] [Related]
5. Identifying health related occupations of Twitter users through word embedding and deep neural networks. Zainab K; Srivastava G; Mago V BMC Bioinformatics; 2022 Sep; 22(Suppl 10):630. PubMed ID: 36171569 [TBL] [Abstract][Full Text] [Related]
6. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127 [TBL] [Abstract][Full Text] [Related]
7. Identifying tweets of personal health experience through word embedding and LSTM neural network. Jiang K; Feng S; Song Q; Calix RA; Gupta M; Bernard GR BMC Bioinformatics; 2018 Jun; 19(Suppl 8):210. PubMed ID: 29897323 [TBL] [Abstract][Full Text] [Related]
8. A new word embedding model integrated with medical knowledge for deep learning-based sentiment classification. Khine AH; Wettayaprasit W; Duangsuwan J Artif Intell Med; 2024 Feb; 148():102758. PubMed ID: 38325934 [TBL] [Abstract][Full Text] [Related]
9. Extraction of Medication-Effect Relations in Twitter Data with Neural Embedding and Recurrent Neural Network. Jiang K; Zhang D; Bernard GR Stud Health Technol Inform; 2022 Jun; 290():767-771. PubMed ID: 35673121 [TBL] [Abstract][Full Text] [Related]
10. Evaluating Twitter as a complementary data source for pharmacovigilance. Lardon J; Bellet F; Aboukhamis R; Asfari H; Souvignet J; Jaulent MC; Beyens MN; Lillo-LeLouët A; Bousquet C Expert Opin Drug Saf; 2018 Aug; 17(8):763-774. PubMed ID: 29991282 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts. Korkontzelos I; Nikfarjam A; Shardlow M; Sarker A; Ananiadou S; Gonzalez GH J Biomed Inform; 2016 Aug; 62():148-58. PubMed ID: 27363901 [TBL] [Abstract][Full Text] [Related]
12. Adversarial neural network with sentiment-aware attention for detecting adverse drug reactions. Zhang T; Lin H; Xu B; Yang L; Wang J; Duan X J Biomed Inform; 2021 Nov; 123():103896. PubMed ID: 34487887 [TBL] [Abstract][Full Text] [Related]
13. Classification of Twitter Users Who Tweet About E-Cigarettes. Kim A; Miano T; Chew R; Eggers M; Nonnemaker J JMIR Public Health Surveill; 2017 Sep; 3(3):e63. PubMed ID: 28951381 [TBL] [Abstract][Full Text] [Related]
14. Deep neural networks ensemble for detecting medication mentions in tweets. Weissenbacher D; Sarker A; Klein A; O'Connor K; Magge A; Gonzalez-Hernandez G J Am Med Inform Assoc; 2019 Dec; 26(12):1618-1626. PubMed ID: 31562510 [TBL] [Abstract][Full Text] [Related]
15. DeeProBot: a hybrid deep neural network model for social bot detection based on user profile data. Hayawi K; Mathew S; Venugopal N; Masud MM; Ho PH Soc Netw Anal Min; 2022; 12(1):43. PubMed ID: 35309873 [TBL] [Abstract][Full Text] [Related]
16. Lexicon Knowledge Boosted Interaction Graph Network for Adverse Drug Reaction Recognition From Social Media. Li Z; Yang Z; Wang L; Zhang Y; Lin H; Wang J IEEE J Biomed Health Inform; 2021 Jul; 25(7):2777-2786. PubMed ID: 33275589 [TBL] [Abstract][Full Text] [Related]
17. Pharmacovigilance with Transformers: A Framework to Detect Adverse Drug Reactions Using BERT Fine-Tuned with FARM. Hussain S; Afzal H; Saeed R; Iltaf N; Umair MY Comput Math Methods Med; 2021; 2021():5589829. PubMed ID: 34422092 [TBL] [Abstract][Full Text] [Related]
18. Adverse drug reaction detection on social media with deep linguistic features. Zhang Y; Cui S; Gao H J Biomed Inform; 2020 Jun; 106():103437. PubMed ID: 32360987 [TBL] [Abstract][Full Text] [Related]
19. Utilizing social media data for pharmacovigilance: A review. Sarker A; Ginn R; Nikfarjam A; O'Connor K; Smith K; Jayaraman S; Upadhaya T; Gonzalez G J Biomed Inform; 2015 Apr; 54():202-12. PubMed ID: 25720841 [TBL] [Abstract][Full Text] [Related]
20. Ontology-Based Healthcare Named Entity Recognition from Twitter Messages Using a Recurrent Neural Network Approach. Batbaatar E; Ryu KH Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31569654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]