These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 35415618)
1. Transcriptome and metabolome analyses reveal the regulation of peel coloration in green, red Chinese prickly ash ( Zheng T; Zhang Q; Su KX; Liu SM Food Chem (Oxf); 2020 Oct; 1():100004. PubMed ID: 35415618 [TBL] [Abstract][Full Text] [Related]
2. Regulation mechanisms of flavonoids biosynthesis of Hancheng Dahongpao peels (Zanthoxylum bungeanum Maxim) at different development stages by integrated metabolomics and transcriptomics analysis. Zheng T; Han J; Su KX; Sun BY; Liu SM BMC Plant Biol; 2022 May; 22(1):251. PubMed ID: 35596133 [TBL] [Abstract][Full Text] [Related]
3. Regulation of Fig ( Wang Z; Cui Y; Vainstein A; Chen S; Ma H Front Plant Sci; 2017; 8():1990. PubMed ID: 29209349 [TBL] [Abstract][Full Text] [Related]
4. Time-series based metabolomics reveals the characteristics of the color-related metabolites during the different coloration stages of Zanthoxylum bungeanum peel. Wang C; Han F; Chen X; Zhao A; Wang D Food Res Int; 2022 May; 155():111077. PubMed ID: 35400454 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome and Metabolome Dynamics Explain Aroma Differences between Green and Red Prickly Ash Fruit. Fei X; Qi Y; Lei Y; Wang S; Hu H; Wei A Foods; 2021 Feb; 10(2):. PubMed ID: 33579038 [TBL] [Abstract][Full Text] [Related]
6. Integrated LC-MS/MS and Transcriptome Sequencing Analysis Reveals the Mechanism of Color Formation During Prickly Ash Fruit Ripening. Fei X; Wei Y; Qi Y; Luo Y; Hu H; Wei A Front Nutr; 2022; 9():847823. PubMed ID: 35369068 [TBL] [Abstract][Full Text] [Related]
7. Decoding anthocyanin biosynthesis regulation in Asparagus officinalis peel coloration: Insights from integrated metabolomic and transcriptomic analyses. Ying J; Wen S; Cai Y; Ye Y; Li L; Qian R Plant Physiol Biochem; 2024 Oct; 215():108980. PubMed ID: 39102766 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomics integrated with metabolomics to characterize key pigment compounds and genes related to anthocyanin biosynthesis in Zanthoxylum bungeanum peel. Han N; Sun L; Zhang J; Yuan W; Wang C; Zhao A; Wang D Physiol Plant; 2023; 175(5):e14031. PubMed ID: 37882301 [TBL] [Abstract][Full Text] [Related]
9. Evaluating the Impacts of Climate Factors and Flavonoids Content on Chinese Prickly Ash Peel Color Based on HPLC-MS and Structural Equation Model. Zheng T; Zhang DL; Sun BY; Liu SM Foods; 2022 Aug; 11(16):. PubMed ID: 36010539 [TBL] [Abstract][Full Text] [Related]
10. Metabolome and transcriptome analyses of the molecular mechanisms of flower color mutation in tobacco. Jiao F; Zhao L; Wu X; Song Z; Li Y BMC Genomics; 2020 Sep; 21(1):611. PubMed ID: 32894038 [TBL] [Abstract][Full Text] [Related]
11. Quality Evaluation of Wild Germplasm of Chinese Prickly Ash (Zanthoxylum bungeanum Maxim) from Qinling Mountains at Different Elevations Based on HPLC-Fingerprint. Zheng T; Su KX; Chen XY; Zhang DL; Liu SM Chem Biodivers; 2022 Mar; 19(3):e202100965. PubMed ID: 35112481 [TBL] [Abstract][Full Text] [Related]
12. The current situation of Zanthoxylum bungeanum industry and the research and application prospect. A review. Bao Y; Yang L; Fu Q; Fu Y; Tian Q; Wang C; Huang Q Fitoterapia; 2023 Jan; 164():105380. PubMed ID: 36462661 [TBL] [Abstract][Full Text] [Related]
13. Integrated Metabolome and Transcriptome Analysis Uncovers the Role of Anthocyanin Metabolism in Lang X; Li N; Li L; Zhang S Int J Genomics; 2019; 2019():4393905. PubMed ID: 31781588 [No Abstract] [Full Text] [Related]
14. Integrated Analysis of the Metabolome and Transcriptome on Anthocyanin Biosynthesis in Four Developmental Stages of Ji X; Ren J; Zhang Y; Lang S; Wang D; Song X Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769311 [No Abstract] [Full Text] [Related]
15. Integrated metabolome and transcriptome analysis of the anthocyanin biosynthetic pathway in relation to color mutation in miniature roses. Lu J; Zhang Q; Lang L; Jiang C; Wang X; Sun H BMC Plant Biol; 2021 Jun; 21(1):257. PubMed ID: 34088264 [TBL] [Abstract][Full Text] [Related]
16. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Dong T; Han R; Yu J; Zhu M; Zhang Y; Gong Y; Li Z Food Chem; 2019 Jan; 271():18-28. PubMed ID: 30236664 [TBL] [Abstract][Full Text] [Related]
17. Multi-environment evaluations across ecological regions reveal climate and soil effects on amides contents in Chinese prickly ash peels (Zanthoxylum bungeanum Maxim.). Zheng T; Zeng HT; Sun BY; Liu SM BMC Plant Biol; 2023 Jun; 23(1):313. PubMed ID: 37308832 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptomic and metabolomic profiles reveal fruit peel color variation in two red pomegranate cultivars. Zhao X; Feng Y; Ke D; Teng Y; Yuan Z Plant Mol Biol; 2024 May; 114(3):51. PubMed ID: 38691187 [TBL] [Abstract][Full Text] [Related]
19. Integrative Metabolomic and Transcriptomic Analyses Reveal the Mechanism of Petal Blotch Formation in Wang H; Kong Y; Dou X; Yang Y; Chi X; Lang L; Zhang Q; Pan H; Bai J Int J Mol Sci; 2024 Apr; 25(7):. PubMed ID: 38612838 [TBL] [Abstract][Full Text] [Related]
20. Metabolome and transcriptome profiling provide insights into green apple peel reveals light- and UV-B-responsive pathway in anthocyanins accumulation. Ding R; Che X; Shen Z; Zhang Y BMC Plant Biol; 2021 Jul; 21(1):351. PubMed ID: 34303342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]