BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35415920)

  • 1. Identifying potential paraben transformation products and evaluating changes in toxicity as a result of transformation.
    Penrose MT; Cobb GP
    Water Environ Res; 2022 Apr; 94(4):e10705. PubMed ID: 35415920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of Wastewater Treatment on the Occurrence of Parabens, p-Hydroxybenzoic Acid and Their Chlorinated and Hydroxylated Transformation Products in the Brazos River (Texas, USA).
    Penrose MT; Cobb GP
    Arch Environ Contam Toxicol; 2023 Aug; 85(2):105-118. PubMed ID: 37558810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating seasonal differences in paraben transformation at two different wastewater treatment plants in Texas and comparing parent compound transformation to byproduct formation.
    Penrose MT; Cobb GP
    Water Res; 2023 May; 235():119798. PubMed ID: 36958223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Final amended report on the safety assessment of Methylparaben, Ethylparaben, Propylparaben, Isopropylparaben, Butylparaben, Isobutylparaben, and Benzylparaben as used in cosmetic products.
    Int J Toxicol; 2008; 27 Suppl 4():1-82. PubMed ID: 19101832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction kinetics and degradation efficiency of halogenated methylparabens during ozonation and UV/H
    Lee W; Marcotullio S; Yeom H; Son H; Kim TH; Lee Y
    J Hazard Mater; 2022 Apr; 427():127878. PubMed ID: 34872780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted profiling of chlorinated transformation products and the parent micropollutants in the aquatic environment: A comparison between two coastal cities.
    Chen WL; Ling YS; Lee DJH; Lin XQ; Chen ZY; Liao HT
    Chemosphere; 2020 Mar; 242():125268. PubMed ID: 31896175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence, fate and behavior of parabens in aquatic environments: a review.
    Haman C; Dauchy X; Rosin C; Munoz JF
    Water Res; 2015 Jan; 68():1-11. PubMed ID: 25462712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paraben degradation using catalytic ozonation over volcanic rocks.
    Gomes JF; Quinta-Ferreira ME; Costa R; Quinta-Ferreira RM; Martins RC
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7346-7357. PubMed ID: 29275482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of radical-driven technologies applied for paraben mixture degradation: mechanism, biodegradability, toxicity and cost assessment.
    Gmurek M; Gomes JF; Martins RC; Quinta-Ferreira RM
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37174-37192. PubMed ID: 31749006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentrations and fate of parabens and their metabolites in two typical wastewater treatment plants in northeastern China.
    Ma WL; Zhao X; Zhang ZF; Xu TF; Zhu FJ; Li YF
    Sci Total Environ; 2018 Dec; 644():754-761. PubMed ID: 29990923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of bromide on molecular transformation of dissolved effluent organic matter during ozonation, UV/H
    Zhang B; Fang Z; Wang S; Shi X; Guo B; Gao J; Wang D; Zong W
    Sci Total Environ; 2022 Mar; 811():152328. PubMed ID: 34915012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS).
    González-Mariño I; Quintana JB; Rodríguez I; Cela R
    Water Res; 2011 Dec; 45(20):6770-80. PubMed ID: 22060963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence and AhR activity of brominated parabens in the Kitakami River, North Japan.
    Gouukon Y; Yasuda MT; Yasukawa H; Terasaki M
    Chemosphere; 2020 Jun; 249():126152. PubMed ID: 32062214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the endocrine-disrupting potential of halogenated parabens: An in silico approach.
    Jakopin Ž
    Chemosphere; 2021 Feb; 264(Pt 1):128447. PubMed ID: 33007571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant.
    Li W; Shi Y; Gao L; Liu J; Cai Y
    J Hazard Mater; 2015 Dec; 300():29-38. PubMed ID: 26151382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic toxicity of parabens and their chlorinated by-products in Ceriodaphnia dubia.
    Terasaki M; Abe R; Makino M; Tatarazako N
    Environ Toxicol; 2015; 30(6):664-73. PubMed ID: 24376163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ozonation of parabens in aqueous solution: kinetics and mechanism of degradation.
    Tay KS; Rahman NA; Abas MR
    Chemosphere; 2010 Dec; 81(11):1446-53. PubMed ID: 20875662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna.
    Park KY; Choi SY; Lee SH; Kweon JH; Song JH
    Environ Pollut; 2016 Aug; 215():314-321. PubMed ID: 27213572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp.
    Bhuvaneshwari M; Eltzov E; Veltman B; Shapiro O; Sadhasivam G; Borisover M
    Water Res; 2019 Nov; 164():114910. PubMed ID: 31382150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of disinfection Ct values on cytotoxicity of agricultural wastewaters: Ozonation vs. chlorination.
    Dong S; Massalha N; Plewa MJ; Nguyen TH
    Water Res; 2018 Nov; 144():482-490. PubMed ID: 30077909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.