These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35416235)

  • 1. Spreading, pinching, and coalescence: the Ohnesorge units.
    Fardin MA; Hautefeuille M; Sharma V
    Soft Matter; 2022 May; 18(17):3291-3303. PubMed ID: 35416235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review on the Coalescence of Confined Drops with a Focus on Scaling Laws for the Growth of the Liquid Bridge.
    Ryu S; Zhang H; Anuta UJ
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Unveiling the Anomalies Associated with the Spontaneous Spreading of Droplets.
    Debnath D; Kumar P; Mitra SK
    Langmuir; 2021 Dec; 37(51):14833-14845. PubMed ID: 34904828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spreading of liquid drops over porous substrates.
    Starov VM; Zhdanov SA; Kosvintsev SR; Sobolev VD; Velarde MG
    Adv Colloid Interface Sci; 2003 Jul; 104():123-58. PubMed ID: 12818493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal Aspects of Droplet Spreading Dynamics in Newtonian and Non-Newtonian Fluids.
    Gorin B; Di Mauro G; Bonn D; Kellay H
    Langmuir; 2022 Mar; 38(8):2608-2613. PubMed ID: 35179899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces.
    Vahabi H; Wang W; Davies S; Mabry JM; Kota AK
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29328-29336. PubMed ID: 28771317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coalescence and spreading of drops on liquid pools.
    Kulkarni V; Lolla VY; Tamvada SR; Shirdade N; Anand S
    J Colloid Interface Sci; 2021 Mar; 586():257-268. PubMed ID: 33187667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coalescence of Microscopic Polymeric Drops: Effect of Drop Impact Velocities.
    Sivasankar VS; Etha SA; Hines DR; Das S
    Langmuir; 2021 Nov; 37(45):13512-13526. PubMed ID: 34724618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetics of isolated electrified drops.
    Pillai R; Berry JD; Harvie DJ; Davidson MR
    Soft Matter; 2016 Apr; 12(14):3310-25. PubMed ID: 26954299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of drops – Formation, growth, oscillation, detachment, and coalescence.
    Karbaschi M; Taeibi Rahni M; Javadi A; Cronan CL; Schano KH; Faraji S; Won JY; Ferri JK; Krägel J; Miller R
    Adv Colloid Interface Sci; 2015 Aug; 222():413-24. PubMed ID: 25466690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Early Regime of Drop Spreading.
    Mitra S; Mitra SK
    Langmuir; 2016 Sep; 32(35):8843-8. PubMed ID: 27513708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emulsification in turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes.
    Vankova N; Tcholakova S; Denkov ND; Ivanov IB; Vulchev VD; Danner T
    J Colloid Interface Sci; 2007 Aug; 312(2):363-80. PubMed ID: 17462665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bulk advection and interfacial flows in the binary coalescence of surfactant-laden and surfactant-free drops.
    Nowak E; Xie Z; Kovalchuk NM; Matar OK; Simmons MJH
    Soft Matter; 2017 Jul; 13(26):4616-4628. PubMed ID: 28613315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakup of liquid filaments.
    Castrejón-Pita AA; Castrejón-Pita JR; Hutchings IM
    Phys Rev Lett; 2012 Feb; 108(7):074506. PubMed ID: 22401212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized scaling theory for spontaneous spreading of Newtonian fluids on solid substrates.
    Azimi Yancheshme A; Palmese GR; Alvarez NJ
    J Colloid Interface Sci; 2023 Apr; 636():677-688. PubMed ID: 36680958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of soluble surfactants on pinch-off of moderately viscous drops and satellite size.
    Kovalchuk NM; Jenkinson H; Miller R; Simmons MJH
    J Colloid Interface Sci; 2018 Apr; 516():182-191. PubMed ID: 29408104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface.
    Zhang X; Basaran OA
    J Colloid Interface Sci; 1997 Mar; 187(1):166-78. PubMed ID: 9245326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Study of the Coalescence and Mixing of Drops of Different Polymeric Materials.
    Sivasankar VS; Hines DR; Das S
    Langmuir; 2022 Nov; 38(46):14084-14096. PubMed ID: 36346910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.