These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 35416487)
1. Mutants lacking global regulators, fis and arcA, in Escherichia coli enhanced growth fitness under acetate metabolism by pathway reprogramming. Jindal S; Iyer MS; Jyoti P; Masakapalli SK; Venkatesh KV Appl Microbiol Biotechnol; 2022 Apr; 106(8):3231-3243. PubMed ID: 35416487 [TBL] [Abstract][Full Text] [Related]
2. Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). Waegeman H; Beauprez J; Moens H; Maertens J; De Mey M; Foulquié-Moreno MR; Heijnen JJ; Charlier D; Soetaert W BMC Microbiol; 2011 Apr; 11():70. PubMed ID: 21481254 [TBL] [Abstract][Full Text] [Related]
4. Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. Toya Y; Nakahigashi K; Tomita M; Shimizu K Mol Biosyst; 2012 Oct; 8(10):2593-604. PubMed ID: 22790675 [TBL] [Abstract][Full Text] [Related]
5. Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions. Nikel PI; Zhu J; San KY; Méndez BS; Bennett GN J Bacteriol; 2009 Sep; 191(17):5538-48. PubMed ID: 19561129 [TBL] [Abstract][Full Text] [Related]
6. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. Perrenoud A; Sauer U J Bacteriol; 2005 May; 187(9):3171-9. PubMed ID: 15838044 [TBL] [Abstract][Full Text] [Related]
7. Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments. Zhu J; Shalel-Levanon S; Bennett G; San KY Metab Eng; 2006 Nov; 8(6):619-27. PubMed ID: 16962353 [TBL] [Abstract][Full Text] [Related]
8. Deletion of genes encoding cytochrome oxidases and quinol monooxygenase blocks the aerobic-anaerobic shift in Escherichia coli K-12 MG1655. Portnoy VA; Scott DA; Lewis NE; Tarasova Y; Osterman AL; Palsson BØ Appl Environ Microbiol; 2010 Oct; 76(19):6529-40. PubMed ID: 20709841 [TBL] [Abstract][Full Text] [Related]
9. Escherichia coli arcA mutants: metabolic profile characterization of microaerobic cultures using glycerol as a carbon source. Nikel PI; Pettinari MJ; Ramírez MC; Galvagno MA; Méndez BS J Mol Microbiol Biotechnol; 2008; 15(1):48-54. PubMed ID: 18349550 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures. Kumar R; Shimizu K Microb Cell Fact; 2011 Jan; 10():3. PubMed ID: 21272324 [TBL] [Abstract][Full Text] [Related]
11. Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Shalel-Levanon S; San KY; Bennett GN Metab Eng; 2005; 7(5-6):364-74. PubMed ID: 16140031 [TBL] [Abstract][Full Text] [Related]
12. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Yao R; Hirose Y; Sarkar D; Nakahigashi K; Ye Q; Shimizu K Microb Cell Fact; 2011 Aug; 10():67. PubMed ID: 21831320 [TBL] [Abstract][Full Text] [Related]
13. The effect of global transcriptional regulators on the anaerobic fermentative metabolism of Escherichia coli. Kargeti M; Venkatesh KV Mol Biosyst; 2017 Jun; 13(7):1388-1398. PubMed ID: 28573283 [TBL] [Abstract][Full Text] [Related]
14. Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. Wei B; Shin S; LaPorte D; Wolfe AJ; Romeo T J Bacteriol; 2000 Mar; 182(6):1632-40. PubMed ID: 10692369 [TBL] [Abstract][Full Text] [Related]
15. Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Shalel-Levanon S; San KY; Bennett GN Biotechnol Bioeng; 2005 Oct; 92(2):147-59. PubMed ID: 15988767 [TBL] [Abstract][Full Text] [Related]
16. Metabolic perturbations in mutants of glucose transporters and their applications in metabolite production in Escherichia coli. Jung HM; Im DK; Lim JH; Jung GY; Oh MK Microb Cell Fact; 2019 Oct; 18(1):170. PubMed ID: 31601271 [TBL] [Abstract][Full Text] [Related]
17. Metabolic regulation of an fnr gene knockout Escherichia coli under oxygen limitation. Marzan LW; Siddiquee KA; Shimizu K Bioeng Bugs; 2011; 2(6):331-7. PubMed ID: 22008943 [TBL] [Abstract][Full Text] [Related]
18. Strain engineering to reduce acetate accumulation during microaerobic growth conditions in Escherichia coli. Veeravalli K; Schindler T; Dong E; Yamada M; Hamilton R; Laird MW Biotechnol Prog; 2018 Mar; 34(2):303-314. PubMed ID: 29193870 [TBL] [Abstract][Full Text] [Related]
19. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Levanon SS; San KY; Bennett GN Biotechnol Bioeng; 2005 Mar; 89(5):556-64. PubMed ID: 15669087 [TBL] [Abstract][Full Text] [Related]
20. Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Haverkorn van Rijsewijk BR; Nanchen A; Nallet S; Kleijn RJ; Sauer U Mol Syst Biol; 2011 Mar; 7():477. PubMed ID: 21451587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]