BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35416506)

  • 1. Management and health risk assessment of chemical contamination events in water distribution systems using PSO.
    Moghaddam A; Afsharnia M; Mokhtari M; Peirovi-Minaee R
    Environ Monit Assess; 2022 Apr; 194(5):362. PubMed ID: 35416506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-objective optimization of hydrant flushing in a water distribution system using a fast hybrid technique.
    Shoorangiz M; Nikoo MR; Šimůnek J; Gandomi AH; Adamowski JF; Al-Wardy M
    J Environ Manage; 2023 May; 334():117463. PubMed ID: 36801802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep reinforcement learning based valve scheduling for pollution isolation in water distribution network.
    Hu CY; Cai JY; Zeng Z; Yan XS; Gong WY; Wang L
    Math Biosci Eng; 2019 Sep; 17(1):105-121. PubMed ID: 31731342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using data mining techniques to isolate chemical intrusion in water distribution systems.
    Barros DB; Cardoso SM; Oliveira E; Brentan B; Ribeiro L
    Environ Monit Assess; 2022 Feb; 194(3):203. PubMed ID: 35182211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient multi-objective optimization method for water quality sensor placement within water distribution systems considering contamination probability variations.
    He G; Zhang T; Zheng F; Zhang Q
    Water Res; 2018 Oct; 143():165-175. PubMed ID: 29945032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of PSO algorithm in short-term optimization of reservoir operation.
    SaberChenari K; Abghari H; Tabari H
    Environ Monit Assess; 2016 Dec; 188(12):667. PubMed ID: 27844241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the possible scenarios for the optimal locating of quality sensors in the water distribution networks with uncertain contamination.
    Jafari H; Rajaee T; Nazif S
    J Water Health; 2020 Oct; 18(5):704-721. PubMed ID: 33095194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time contamination zoning in water distribution networks for contamination emergencies: a case study.
    Bazargan-Lari MR; Taghipour S; Habibi M
    Environ Monit Assess; 2021 May; 193(6):336. PubMed ID: 33973066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of water quality model for distribution networks using genetic algorithm, particle swarm optimization, and hybrid methods.
    Peirovi Minaee R; Afsharnia M; Moghaddam A; Ebrahimi AA; Askarishahi M; Mokhtari M
    MethodsX; 2019; 6():540-548. PubMed ID: 30976527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal sensor placement for detecting organophosphate intrusions into water distribution systems.
    Ohar Z; Lahav O; Ostfeld A
    Water Res; 2015 Apr; 73():193-203. PubMed ID: 25662513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-pipe water quality monitoring in water supply systems under steady and unsteady state flow conditions: a quantitative assessment.
    Aisopou A; Stoianov I; Graham NJ
    Water Res; 2012 Jan; 46(1):235-46. PubMed ID: 22094001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contamination source identification in water distribution networks using convolutional neural network.
    Sun L; Yan H; Xin K; Tao T
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36786-36797. PubMed ID: 31745764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimum Water Quality Monitoring Network Design for Bidirectional River Systems.
    Zhu X; Yue Y; Wong PWH; Zhang Y; Tan J
    Int J Environ Res Public Health; 2018 Jan; 15(2):. PubMed ID: 29364851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agent-based modeling to simulate contamination events and evaluate threat management strategies in water distribution systems.
    Zechman EM
    Risk Anal; 2011 May; 31(5):758-72. PubMed ID: 21231948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virus contamination from operation and maintenance events in small drinking water distribution systems.
    Lambertini E; Spencer SK; Kieke BA; Loge FJ; Borchardt MA
    J Water Health; 2011 Dec; 9(4):799-812. PubMed ID: 22048438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of exposure scenarios on intentional microbiological contamination in a drinking water distribution network.
    Schijven J; Forêt JM; Chardon J; Teunis P; Bouwknegt M; Tangena B
    Water Res; 2016 Jun; 96():148-54. PubMed ID: 27038584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selecting the best location of water quality sensors in water distribution networks by considering the importance of nodes and contaminations using NSGA-III (case study: Zahedan water distribution network, Iran).
    Harif S; Azizyan G; Dehghani Darmian M; Givehchi M
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):53229-53252. PubMed ID: 36853532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollution source localization in an urban water supply network based on dynamic water demand.
    Yan X; Zhu Z; Li T
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):17901-17910. PubMed ID: 29079984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory studies investigating the processes leading to discolouration in water distribution networks.
    Husband PS; Boxall JB; Saul AJ
    Water Res; 2008 Oct; 42(16):4309-18. PubMed ID: 18775550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.