These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35416675)

  • 1. Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods.
    Zheng P; Yang W; Wu W; Isayev O; Dral PO
    J Phys Chem Lett; 2022 Apr; 13(15):3479-3491. PubMed ID: 35416675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark of general-purpose machine learning-based quantum mechanical method AIQM1 on reaction barrier heights.
    Chen Y; Ou Y; Zheng P; Huang Y; Ge F; Dral PO
    J Chem Phys; 2023 Feb; 158(7):074103. PubMed ID: 36813722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules.
    Smith JS; Zubatyuk R; Nebgen B; Lubbers N; Barros K; Roitberg AE; Isayev O; Tretiak S
    Sci Data; 2020 May; 7(1):134. PubMed ID: 32358545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling pyranose ring pucker in carbohydrates using machine learning and semi-empirical quantum chemical methods.
    Kong L; Bryce RA
    J Comput Chem; 2022 Nov; 43(30):2009-2022. PubMed ID: 36165294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing ANI-2x, ANI-1ccx neural networks, force field, and DFT methods for predicting conformational potential energy of organic molecules.
    Rezaee M; Ekrami S; Hashemianzadeh SM
    Sci Rep; 2024 May; 14(1):11791. PubMed ID: 38783010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning.
    Smith JS; Nebgen BT; Zubatyuk R; Lubbers N; Devereux C; Barros K; Tretiak S; Isayev O; Roitberg AE
    Nat Commun; 2019 Jul; 10(1):2903. PubMed ID: 31263102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence-enhanced quantum chemical method with broad applicability.
    Zheng P; Zubatyuk R; Wu W; Isayev O; Dral PO
    Nat Commun; 2021 Dec; 12(1):7022. PubMed ID: 34857738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Energies Derived from Deep Learning: Application to the Prediction of Formation Enthalpies Up to High Energy Compounds.
    Mathieu D
    Mol Inform; 2022 May; 41(5):e2100064. PubMed ID: 34894091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enthalpies of Formation of Hydrazine and Its Derivatives.
    Dorofeeva OV; Ryzhova ON; Suchkova TA
    J Phys Chem A; 2017 Jul; 121(28):5361-5370. PubMed ID: 28636377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmark study on deep neural network potentials for small organic molecules.
    Modee R; Laghuvarapu S; Priyakumar UD
    J Comput Chem; 2022 Feb; 43(5):308-318. PubMed ID: 34870332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations.
    Dral PO; von Lilienfeld OA; Thiel W
    J Chem Theory Comput; 2015 May; 11(5):2120-2125. PubMed ID: 26146493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Prediction of Tautomerization Energies.
    Vazquez-Salazar LI; Boittier ED; Unke OT; Meuwly M
    J Chem Theory Comput; 2021 Aug; 17(8):4769-4785. PubMed ID: 34288675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural network atomistic potentials for global energy minima search in carbon clusters.
    Tkachenko NV; Tkachenko AA; Nebgen B; Tretiak S; Boldyrev AI
    Phys Chem Chem Phys; 2023 Aug; 25(32):21173-21182. PubMed ID: 37490276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic and ab initio analysis of the controversial enthalpy of formation of formaldehyde.
    da Silva G; Bozzelli JW; Sebbar N; Bockhorn H
    Chemphyschem; 2006 May; 7(5):1119-26. PubMed ID: 16596698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ANI/EFP: Modeling Long-Range Interactions in ANI Neural Network with Effective Fragment Potentials.
    Haghiri S; Viquez Rojas C; Bhat S; Isayev O; Slipchenko L
    J Chem Theory Comput; 2024 Oct; 20(20):9138-9147. PubMed ID: 39352841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2006 Dec; 110(48):13058-67. PubMed ID: 17134166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.