BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35416823)

  • 1. Reinforced concrete inspired Si/rGO/cPAN hybrid electrode: highly improved lithium storage
    Qin X; Wang Y; Wang H; Lin H; Zhang X; Li Y; Li Z; Wang L
    Nanoscale; 2022 May; 14(17):6488-6496. PubMed ID: 35416823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode Design from "Internal" to "External" for High Stability Silicon Anodes in Lithium-Ion Batteries.
    Qi S; Zhang X; Lv W; Zhang Y; Kong D; Huang Z; Yang QH
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14142-14149. PubMed ID: 30907576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing a Stable Integrated Silicon Electrode with Efficient Lithium Storage Performance through Multidimensional Structural Design.
    Li F; Wu H; Wen H; Wang C; Shen C; Su L; Liu S; Chen Y; Wang L
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8802-8812. PubMed ID: 38319879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced graphene oxide-encaged submicron-silicon anode interfacially stabilized by Al
    Tan X; Zhao Z; Na Z; Zhuo R; Zhou F; Wang D; Zhu L; Li Y; Hou S; Cai X
    RSC Adv; 2024 Apr; 14(16):11323-11333. PubMed ID: 38595724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries.
    Liu H; Chen Y; Jiang B; Zhao Y; Guo X; Ma T
    Dalton Trans; 2020 May; 49(17):5669-5676. PubMed ID: 32292976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Sandwiched Silicon/Reduced Graphene Oxide Composites with Dual Hybridization for Their Stable Lithium Storage Properties.
    Yang Y; Zhang R; Zhang Q; Feng L; Wen G; Qin LC; Wang D
    Molecules; 2024 May; 29(10):. PubMed ID: 38792041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-Standing Stable Silicon-Based Anode with Exceptional Flexibility Realized by a Multifunctional Structure Design in Multiple Dimensions.
    Yang Z; Song H; Chen J; Lin K; Cai Q; Li T; Zhao D; Liu M; Qin X; Kang F; Li B
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46439-46448. PubMed ID: 36194125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Encapsulation of Nano-Si in Redox Assembled rGO Film as Binder-Free Anode for Flexible/Bendable Lithium-Ion Batteries.
    Cai X; Liu W; Zhao Z; Li S; Yang S; Zhang S; Gao Q; Yu X; Wang H; Fang Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):3897-3908. PubMed ID: 30628439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Porous Silicon/Nanosilver Anodes from Industrial Low-Grade Silicon for Lithium-Ion Batteries.
    Xi F; Zhang Z; Wan X; Li S; Ma W; Chen X; Chen R; Luo B; Wang L
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):49080-49089. PubMed ID: 33052668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries.
    Shao F; Li H; Yao L; Xu S; Li G; Li B; Zou C; Yang Z; Su Y; Hu N; Zhang Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27270-27277. PubMed ID: 34081435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the Size of Reduced Graphene Oxide Sheets to Fabricate Silicon Composite Anodes for Lithium-Ion Batteries.
    Liang YZ; Hsu TY; Su YS
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):29226-29234. PubMed ID: 38776255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Electrochemical Performance of Electrostatic Self-Assembled Nano-Silicon@N-Doped Reduced Graphene Oxide/Carbon Nanofibers Composite as Anode Material for Lithium-Ion Batteries.
    Cong R; Park HH; Jo M; Lee H; Lee CS
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Si/Ti2O3/Reduced Graphene Oxide Nanocomposite Anodes for Lithium-Ion Batteries with Highly Enhanced Cyclic Stability.
    Park AR; Son DY; Kim JS; Lee JY; Park NG; Park J; Lee JK; Yoo PJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18483-90. PubMed ID: 26244752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Si@SnS
    Dai J; Liao J; He M; Yang M; Wu K; Yao W
    ChemSusChem; 2019 Dec; 12(23):5092-5098. PubMed ID: 31628722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a Low-Strain Si@TiSi
    Zhang W; Li W; Gui S; Wang X; Zhang Z; Chen Q; Wei J; Tu S; Duan X; Wang X; Cheng K; Zhan R; Tan Y; Fan F; Zhang Y; Li H; Sun Y; Zhou H; Yang H
    ACS Appl Mater Interfaces; 2024 May; 16(20):26234-26244. PubMed ID: 38711193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries.
    Cong R; Choi JY; Song JB; Jo M; Lee H; Lee CS
    Sci Rep; 2021 Jan; 11(1):1283. PubMed ID: 33446702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries.
    Maddipatla R; Loka C; Lee KS
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54608-54618. PubMed ID: 33231419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Porous Sandwich-Like C/Si-Graphene-Si/C Nanosheets for Superior Lithium Storage.
    Yao W; Chen J; Zhan L; Wang Y; Yang S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39371-39379. PubMed ID: 28937731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life.
    Liu X; Zhang J; Si W; Xi L; Eichler B; Yan C; Schmidt OG
    ACS Nano; 2015 Feb; 9(2):1198-205. PubMed ID: 25646575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a bowl-like Si@rGO architecture for an improved lithium ion battery via a synergistic effect.
    Zhang Z; Du Y; Li H
    Nanotechnology; 2020 Feb; 31(9):095402. PubMed ID: 31715593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.