These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35416850)

  • 21. Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus.
    Yildirim E; Zhang Z; Uz T; Chen CQ; Manev R; Manev H
    Neurosci Lett; 2003 Jul; 345(2):141-3. PubMed ID: 12821190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hidden pharmacological activities of valproic acid: A new insight.
    Singh D; Gupta S; Verma I; Morsy MA; Nair AB; Ahmed AF
    Biomed Pharmacother; 2021 Oct; 142():112021. PubMed ID: 34463268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene.
    Lee RS; Pirooznia M; Guintivano J; Ly M; Ewald ER; Tamashiro KL; Gould TD; Moran TH; Potash JB
    Transl Psychiatry; 2015 Jul; 5(7):e600. PubMed ID: 26171981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes.
    Milutinovic S; D'Alessio AC; Detich N; Szyf M
    Carcinogenesis; 2007 Mar; 28(3):560-71. PubMed ID: 17012225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gestational valproic acid exposure induces epigenetic modifications in murine decidua.
    Shafique S; Winn LM
    Placenta; 2021 Apr; 107():31-40. PubMed ID: 33735658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the effects of valproic acid on placental epigenetic modifications and development in the CD-1 mouse model.
    Jackson BL; Shafique S; Natale BV; Natale DRC; Winn LM
    Reprod Toxicol; 2024 Mar; 124():108551. PubMed ID: 38280688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of sodium valproate on the chromatin of Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae) under in vitro culture conditions.
    Bassani A; Rocha MA; Rodrigues VLCC; Santos DS; Nascimento JD; da Rosa JA; Mello MLS
    Acta Histochem; 2021 Apr; 123(3):151695. PubMed ID: 33571696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Valproic Acid Increases Histone Acetylation and Alters Gene Expression in the Donor Cells But Does Not Improve the In Vitro Developmental Competence of Buffalo (Bubalus bubalis) Embryos Produced by Hand-Made Cloning.
    Selokar NL; Saini M; Agrawal H; Palta P; Chauhan MS; Manik R; Singla SK
    Cell Reprogram; 2017 Feb; 19(1):10-18. PubMed ID: 28055238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetic histone acetylation and Bdnf dysregulation in the hippocampus of rats exposed to repeated, low-dose diisopropylfluorophosphate.
    Ribeiro ACR; Jahr FM; Hawkins E; Kronfol MM; Younis RM; McClay JL; Deshpande LS
    Life Sci; 2021 Sep; 281():119765. PubMed ID: 34186043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism.
    Takuma K; Hara Y; Kataoka S; Kawanai T; Maeda Y; Watanabe R; Takano E; Hayata-Takano A; Hashimoto H; Ago Y; Matsuda T
    Pharmacol Biochem Behav; 2014 Nov; 126():43-9. PubMed ID: 25240644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats.
    Citraro R; Leo A; De Caro C; Nesci V; Gallo Cantafio ME; Amodio N; Mattace Raso G; Lama A; Russo R; Calignano A; Tallarico M; Russo E; De Sarro G
    Mol Neurobiol; 2020 Jan; 57(1):408-421. PubMed ID: 31368023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigenetic regulation of post-embryonic development.
    Palli SR
    Curr Opin Insect Sci; 2021 Feb; 43():63-69. PubMed ID: 33068783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of histone acetylation in the stimulatory effect of valproic acid on vascular endothelial tissue-type plasminogen activator expression.
    Larsson P; Ulfhammer E; Magnusson M; Bergh N; Lunke S; El-Osta A; Medcalf RL; Svensson PA; Karlsson L; Jern S
    PLoS One; 2012; 7(2):e31573. PubMed ID: 22363677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in chromatin structure in NIH 3T3 cells induced by valproic acid and trichostatin A.
    Felisbino MB; Gatti MS; Mello ML
    J Cell Biochem; 2014 Nov; 115(11):1937-47. PubMed ID: 24913611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into the molecular and epigenetic effects of antitumor Pt(IV)-valproic acid conjugates in human ovarian cancer cells.
    Novohradsky V; Zerzankova L; Stepankova J; Vrana O; Raveendran R; Gibson D; Kasparkova J; Brabec V
    Biochem Pharmacol; 2015 Jun; 95(3):133-44. PubMed ID: 25888926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Valproate increases dopamine transporter expression through histone acetylation and enhanced promoter binding of Nurr1.
    Green AL; Zhan L; Eid A; Zarbl H; Guo GL; Richardson JR
    Neuropharmacology; 2017 Oct; 125():189-196. PubMed ID: 28743636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Paternal valproic acid exposure in mice triggers behavioral alterations in offspring.
    Ibi D; Fujiki Y; Koide N; Nakasai G; Takaba R; Hiramatsu M
    Neurotoxicol Teratol; 2019; 76():106837. PubMed ID: 31654689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lysine deacetylase inhibition attenuates hypertension and is accompanied by acetylation of mineralocorticoid receptor instead of histone acetylation in spontaneously hypertensive rats.
    Seok YM; Lee HA; Park KM; Hwangbo MH; Kim IK
    Naunyn Schmiedebergs Arch Pharmacol; 2016 Jul; 389(7):799-808. PubMed ID: 27106211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigenetic Downregulation of Scn3a Expression by Valproate: a Possible Role in Its Anticonvulsant Activity.
    Tan NN; Tang HL; Lin GW; Chen YH; Lu P; Li HJ; Gao MM; Zhao QH; Yi YH; Liao WP; Long YS
    Mol Neurobiol; 2017 May; 54(4):2831-2842. PubMed ID: 27013471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection.
    Monti B; Polazzi E; Contestabile A
    Curr Mol Pharmacol; 2009 Jan; 2(1):95-109. PubMed ID: 20021450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.