These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 35417073)
1. Critical factors in achieving fine-scale functional MRI: Removing sources of inadvertent spatial smoothing. Wang J; Nasr S; Roe AW; Polimeni JR Hum Brain Mapp; 2022 Aug; 43(11):3311-3331. PubMed ID: 35417073 [TBL] [Abstract][Full Text] [Related]
2. Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns. Chaimow D; Uğurbil K; Shmuel A Neuroimage; 2018 Jan; 164():67-99. PubMed ID: 28461061 [TBL] [Abstract][Full Text] [Related]
3. Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data. Blazejewska AI; Fischl B; Wald LL; Polimeni JR Neuroimage; 2019 Apr; 189():601-614. PubMed ID: 30690157 [TBL] [Abstract][Full Text] [Related]
4. High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T. Kemper VG; De Martino F; Emmerling TC; Yacoub E; Goebel R Neuroimage; 2018 Jan; 164():48-58. PubMed ID: 28416453 [TBL] [Abstract][Full Text] [Related]
6. Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3. Nasr S; Polimeni JR; Tootell RB J Neurosci; 2016 Feb; 36(6):1841-57. PubMed ID: 26865609 [TBL] [Abstract][Full Text] [Related]
7. Resolving laminar activation in human V1 using ultra-high spatial resolution fMRI at 7T. Kashyap S; Ivanov D; Havlicek M; Sengupta S; Poser BA; Uludağ K Sci Rep; 2018 Nov; 8(1):17063. PubMed ID: 30459391 [TBL] [Abstract][Full Text] [Related]
8. Columnar organization of mid-spectral and end-spectral hue preferences in human visual cortex. Nasr S; Tootell RBH Neuroimage; 2018 Nov; 181():748-759. PubMed ID: 30053514 [TBL] [Abstract][Full Text] [Related]
9. A critical assessment of data quality and venous effects in sub-millimeter fMRI. Kay K; Jamison KW; Vizioli L; Zhang R; Margalit E; Ugurbil K Neuroimage; 2019 Apr; 189():847-869. PubMed ID: 30731246 [TBL] [Abstract][Full Text] [Related]
10. Against hyperacuity in brain reading: spatial smoothing does not hurt multivariate fMRI analyses? Op de Beeck HP Neuroimage; 2010 Feb; 49(3):1943-8. PubMed ID: 19285144 [TBL] [Abstract][Full Text] [Related]
11. The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis. Gardumi A; Ivanov D; Hausfeld L; Valente G; Formisano E; Uludağ K Neuroimage; 2016 May; 132():32-42. PubMed ID: 26899782 [TBL] [Abstract][Full Text] [Related]
12. Addressing challenges of high spatial resolution UHF fMRI for group analysis of higher-order cognitive tasks: An inter-sensory task directing attention between visual and somatosensory domains. Aquino KM; Sokoliuk R; Pakenham DO; Sanchez-Panchuelo RM; Hanslmayr S; Mayhew SD; Mullinger KJ; Francis ST Hum Brain Mapp; 2019 Mar; 40(4):1298-1316. PubMed ID: 30430706 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field. Moerel M; De Martino F; Kemper VG; Schmitter S; Vu AT; Uğurbil K; Formisano E; Yacoub E Neuroimage; 2018 Jan; 164():18-31. PubMed ID: 28373123 [TBL] [Abstract][Full Text] [Related]
14. Left, right, or bilateral amygdala activation? How effects of smoothing and motion correction on ultra-high field, high-resolution functional magnetic resonance imaging (fMRI) data alter inferences. Murphy JE; Yanes JA; Kirby LAJ; Reid MA; Robinson JL Neurosci Res; 2020 Jan; 150():51-59. PubMed ID: 30763590 [TBL] [Abstract][Full Text] [Related]
15. Spatial accuracy of fMRI activation influenced by volume- and surface-based spatial smoothing techniques. Jo HJ; Lee JM; Kim JH; Shin YW; Kim IY; Kwon JS; Kim SI Neuroimage; 2007 Jan; 34(2):550-64. PubMed ID: 17110131 [TBL] [Abstract][Full Text] [Related]
16. High-field fMRI unveils orientation columns in humans. Yacoub E; Harel N; Ugurbil K Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10607-12. PubMed ID: 18641121 [TBL] [Abstract][Full Text] [Related]
17. Groupwise spatial normalization of fMRI data based on multi-range functional connectivity patterns. Jiang D; Du Y; Cheng H; Jiang T; Fan Y Neuroimage; 2013 Nov; 82():355-72. PubMed ID: 23727315 [TBL] [Abstract][Full Text] [Related]
18. Scale-specific analysis of fMRI data on the irregular cortical surface. Chen Y; Cichy RM; Stannat W; Haynes JD Neuroimage; 2018 Nov; 181():370-381. PubMed ID: 30033391 [TBL] [Abstract][Full Text] [Related]
19. Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging. Weldon KB; Olman CA Philos Trans R Soc Lond B Biol Sci; 2021 Jan; 376(1815):20200040. PubMed ID: 33190599 [TBL] [Abstract][Full Text] [Related]
20. Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI. Marquardt I; Schneider M; Gulban OF; Ivanov D; Uludağ K Hum Brain Mapp; 2018 Jul; 39(7):2812-2827. PubMed ID: 29575494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]