These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 35417129)

  • 1. Exploration of
    Stieglitz JT; Lahiri P; Stout MI; Van Deventer JA
    ACS Synth Biol; 2022 May; 11(5):1824-1834. PubMed ID: 35417129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
    Beránek V; Willis JCW; Chin JW
    Biochemistry; 2019 Feb; 58(5):387-390. PubMed ID: 30260626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating Efficient
    Avila-Crump S; Hemshorn ML; Jones CM; Mbengi L; Meyer K; Griffis JA; Jana S; Petrina GE; Pagar VV; Karplus PA; Petersson EJ; Perona JJ; Mehl RA; Cooley RB
    ACS Chem Biol; 2022 Dec; 17(12):3458-3469. PubMed ID: 36383641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells.
    Meineke B; Heimgärtner J; Lafranchi L; Elsässer SJ
    ACS Chem Biol; 2018 Nov; 13(11):3087-3096. PubMed ID: 30260624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut.
    Krahn N; Zhang J; Melnikov SV; Tharp JM; Villa A; Patel A; Howard RJ; Gabir H; Patel TR; Stetefeld J; Puglisi J; Söll D
    Nucleic Acids Res; 2024 Jan; 52(2):513-524. PubMed ID: 38100361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed Evolution of the
    Schwark DG; Schmitt MA; Fisk JD
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme.
    Cho CC; Blankenship LR; Ma X; Xu S; Liu W
    J Mol Biol; 2022 Apr; 434(8):167453. PubMed ID: 35033561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Semi-Rationally Engineered Bacterial Pyrrolysyl-tRNA Synthetase Genetically Encodes Phenyl Azide Chemistry.
    Fladischer P; Weingartner A; Blamauer J; Darnhofer B; Birner-Gruenberger R; Kardashliev T; Ruff AJ; Schwaneberg U; Wiltschi B
    Biotechnol J; 2019 Mar; 14(3):e1800125. PubMed ID: 29862654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
    Willis JCW; Chin JW
    Nat Chem; 2018 Aug; 10(8):831-837. PubMed ID: 29807989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast.
    Stieglitz JT; Kehoe HP; Lei M; Van Deventer JA
    ACS Synth Biol; 2018 Sep; 7(9):2256-2269. PubMed ID: 30139255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast.
    Stieglitz JT; Van Deventer JA
    ACS Synth Biol; 2022 Jul; 11(7):2284-2299. PubMed ID: 35793554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis.
    Baumann T; Exner M; Budisa N
    Adv Biochem Eng Biotechnol; 2018; 162():1-19. PubMed ID: 27783132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal Structure of Pyrrolysyl-tRNA Synthetase from a Methanogenic Archaeon ISO4-G1 and Its Structure-Based Engineering for Highly-Productive Cell-Free Genetic Code Expansion with Non-Canonical Amino Acids.
    Yanagisawa T; Seki E; Tanabe H; Fujii Y; Sakamoto K; Yokoyama S
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code.
    Nehring S; Budisa N; Wiltschi B
    PLoS One; 2012; 7(4):e31992. PubMed ID: 22493661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency.
    Owens AE; Grasso KT; Ziegler CA; Fasan R
    Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focused Engineering of Pyrrolysyl-tRNA Synthetase-Based Orthogonal Translation Systems for the Incorporation of Various Noncanonical Amino Acids.
    Koch NG; Budisa N
    Methods Mol Biol; 2023; 2676():3-19. PubMed ID: 37277621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion.
    Hu L; Qin X; Huang Y; Cao W; Wang C; Wang Y; Ling X; Chen H; Wu D; Lin Y; Liu T
    ACS Synth Biol; 2020 Oct; 9(10):2723-2736. PubMed ID: 32931698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering mutually orthogonal PylRS/tRNA pairs for dual encoding of functional histidine analogues.
    Taylor CJ; Hardy FJ; Burke AJ; Bednar RM; Mehl RA; Green AP; Lovelock SL
    Protein Sci; 2023 May; 32(5):e4640. PubMed ID: 37051694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed Evolution of
    Fischer JT; Söll D; Tharp JM
    Front Mol Biosci; 2022; 9():850613. PubMed ID: 35372501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of
    Gottfried-Lee I; Perona JJ; Karplus PA; Mehl RA; Cooley RB
    ACS Chem Biol; 2022 Dec; 17(12):3470-3477. PubMed ID: 36395426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.