These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut. Krahn N; Zhang J; Melnikov SV; Tharp JM; Villa A; Patel A; Howard RJ; Gabir H; Patel TR; Stetefeld J; Puglisi J; Söll D Nucleic Acids Res; 2024 Jan; 52(2):513-524. PubMed ID: 38100361 [TBL] [Abstract][Full Text] [Related]
6. Directed Evolution of the Schwark DG; Schmitt MA; Fisk JD Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414 [TBL] [Abstract][Full Text] [Related]
7. The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme. Cho CC; Blankenship LR; Ma X; Xu S; Liu W J Mol Biol; 2022 Apr; 434(8):167453. PubMed ID: 35033561 [TBL] [Abstract][Full Text] [Related]
10. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast. Stieglitz JT; Kehoe HP; Lei M; Van Deventer JA ACS Synth Biol; 2018 Sep; 7(9):2256-2269. PubMed ID: 30139255 [TBL] [Abstract][Full Text] [Related]
11. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast. Stieglitz JT; Van Deventer JA ACS Synth Biol; 2022 Jul; 11(7):2284-2299. PubMed ID: 35793554 [TBL] [Abstract][Full Text] [Related]
12. Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis. Baumann T; Exner M; Budisa N Adv Biochem Eng Biotechnol; 2018; 162():1-19. PubMed ID: 27783132 [TBL] [Abstract][Full Text] [Related]
13. Crystal Structure of Pyrrolysyl-tRNA Synthetase from a Methanogenic Archaeon ISO4-G1 and Its Structure-Based Engineering for Highly-Productive Cell-Free Genetic Code Expansion with Non-Canonical Amino Acids. Yanagisawa T; Seki E; Tanabe H; Fujii Y; Sakamoto K; Yokoyama S Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047230 [TBL] [Abstract][Full Text] [Related]
14. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code. Nehring S; Budisa N; Wiltschi B PLoS One; 2012; 7(4):e31992. PubMed ID: 22493661 [TBL] [Abstract][Full Text] [Related]
15. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency. Owens AE; Grasso KT; Ziegler CA; Fasan R Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180 [TBL] [Abstract][Full Text] [Related]
16. Focused Engineering of Pyrrolysyl-tRNA Synthetase-Based Orthogonal Translation Systems for the Incorporation of Various Noncanonical Amino Acids. Koch NG; Budisa N Methods Mol Biol; 2023; 2676():3-19. PubMed ID: 37277621 [TBL] [Abstract][Full Text] [Related]
17. Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion. Hu L; Qin X; Huang Y; Cao W; Wang C; Wang Y; Ling X; Chen H; Wu D; Lin Y; Liu T ACS Synth Biol; 2020 Oct; 9(10):2723-2736. PubMed ID: 32931698 [TBL] [Abstract][Full Text] [Related]
18. Engineering mutually orthogonal PylRS/tRNA pairs for dual encoding of functional histidine analogues. Taylor CJ; Hardy FJ; Burke AJ; Bednar RM; Mehl RA; Green AP; Lovelock SL Protein Sci; 2023 May; 32(5):e4640. PubMed ID: 37051694 [TBL] [Abstract][Full Text] [Related]
19. Directed Evolution of Fischer JT; Söll D; Tharp JM Front Mol Biosci; 2022; 9():850613. PubMed ID: 35372501 [TBL] [Abstract][Full Text] [Related]