These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35417131)

  • 1. Self-Referenced Surface-Enhanced Raman Scattering Nanosubstrate for the Quantitative Detection of Neurotransmitters.
    Feng L; Li C; Wang L; Li J; Liu X; Li Q; Luo S; Shen J
    ACS Appl Bio Mater; 2022 May; 5(5):2403-2410. PubMed ID: 35417131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spread spectrum SERS allows label-free detection of attomolar neurotransmitters.
    Lee W; Kang BH; Yang H; Park M; Kwak JH; Chung T; Jeong Y; Kim BK; Jeong KH
    Nat Commun; 2021 Jan; 12(1):159. PubMed ID: 33420035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.
    Moody AS; Sharma B
    ACS Chem Neurosci; 2018 Jun; 9(6):1380-1387. PubMed ID: 29601719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap.
    Lim DK; Jeon KS; Hwang JH; Kim H; Kwon S; Suh YD; Nam JM
    Nat Nanotechnol; 2011 May; 6(7):452-60. PubMed ID: 21623360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coffee ring effect assisted improved S. aureus screening on a physically restrained gold nanoflower enriched SERS substrate.
    Juneja S; Bhattacharya J
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110349. PubMed ID: 31325777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman scattering of dopamine on self-assembled gold nanoparticles.
    An JH; El-Said WA; Yea CH; Kim TH; Choi JW
    J Nanosci Nanotechnol; 2011 May; 11(5):4424-9. PubMed ID: 21780469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Calibration 3D Hybrid SERS Substrate and Its Application in Quantitative Analysis.
    Fu BB; Tian XD; Song JJ; Wen BY; Zhang YJ; Fang PP; Li JF
    Anal Chem; 2022 Jul; 94(27):9578-9585. PubMed ID: 35770422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation of Ag nanoparticle based on surface acoustic wave for surface-enhanced Raman spectroscopy detection of dopamine.
    Park JO; Choi Y; Ahn HM; Lee CK; Chun H; Park YM; Kim KB
    Anal Chim Acta; 2024 Jan; 1285():342036. PubMed ID: 38057052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C
    Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced spatially-offset Raman spectroscopy (SESORS) for detection of neurochemicals through the skull at physiologically relevant concentrations.
    Moody AS; Payne TD; Barth BA; Sharma B
    Analyst; 2020 Mar; 145(5):1885-1893. PubMed ID: 31971169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative surface-enhanced Raman measurements with embedded internal reference.
    Zhou Y; Ding R; Joshi P; Zhang P
    Anal Chim Acta; 2015 May; 874():49-53. PubMed ID: 25910445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.
    Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z
    Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical Trapping of Neurotransmitters in Polymer-Mediated Gold Nanoparticle Aggregates for Surface-Enhanced Raman Spectroscopy.
    Vander Ende E; Bourgeois MR; Henry AI; Chávez JL; Krabacher R; Schatz GC; Van Duyne RP
    Anal Chem; 2019 Aug; 91(15):9554-9562. PubMed ID: 31283189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva.
    Zheng P; Li M; Jurevic R; Cushing SK; Liu Y; Wu N
    Nanoscale; 2015 Jul; 7(25):11005-12. PubMed ID: 26008641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles with helical surface structure transformed from chiral molecules for SERS-active substrates preparation.
    Xing T; Qian Q; Ye H; Wang Z; Jin Y; Zhang N; Wang M; Zhou Y; Gao X; Wu L
    Biosens Bioelectron; 2022 Sep; 212():114430. PubMed ID: 35671694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers.
    Yu X; He X; Yang T; Zhao L; Chen Q; Zhang S; Chen J; Xu J
    Int J Nanomedicine; 2018; 13():2337-2347. PubMed ID: 29713165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.