These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35417149)

  • 1. AutoDesigner, a
    Bos PH; Houang EM; Ranalli F; Leffler AE; Boyles NA; Eyrich VA; Luria Y; Katz D; Tang H; Abel R; Bhat S
    J Chem Inf Model; 2022 Apr; 62(8):1905-1915. PubMed ID: 35417149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties.
    Wager TT; Hou X; Verhoest PR; Villalobos A
    ACS Chem Neurosci; 2010 Jun; 1(6):435-49. PubMed ID: 22778837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Cloud-Based Free-Energy Calculations, Synthetically Aware Enumerations, and Goal-Directed Generative Machine Learning for Rapid Large-Scale Chemical Exploration and Optimization.
    Ghanakota P; Bos PH; Konze KD; Staker J; Marques G; Marshall K; Leswing K; Abel R; Bhat S
    J Chem Inf Model; 2020 Sep; 60(9):4311-4325. PubMed ID: 32484669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery.
    Wager TT; Hou X; Verhoest PR; Villalobos A
    ACS Chem Neurosci; 2016 Jun; 7(6):767-75. PubMed ID: 26991242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep generative models for ligand-based de novo design applied to multi-parametric optimization.
    Perron Q; Mirguet O; Tajmouati H; Skiredj A; Rojas A; Gohier A; Ducrot P; Bourguignon MP; Sansilvestri-Morel P; Do Huu N; Gellibert F; Gaston-Mathé Y
    J Comput Chem; 2022 Apr; 43(10):692-703. PubMed ID: 35218219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technically Extended MultiParameter Optimization (TEMPO): An Advanced Robust Scoring Scheme To Calculate Central Nervous System Druggability and Monitor Lead Optimization.
    Ghose AK; Ott GR; Hudkins RL
    ACS Chem Neurosci; 2017 Jan; 8(1):147-154. PubMed ID: 27741392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating in Silico and in Vitro Approaches To Predict Drug Accessibility to the Central Nervous System.
    Zhang YY; Liu H; Summerfield SG; Luscombe CN; Sahi J
    Mol Pharm; 2016 May; 13(5):1540-50. PubMed ID: 27015243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction-Based Enumeration, Active Learning, and Free Energy Calculations To Rapidly Explore Synthetically Tractable Chemical Space and Optimize Potency of Cyclin-Dependent Kinase 2 Inhibitors.
    Konze KD; Bos PH; Dahlgren MK; Leswing K; Tubert-Brohman I; Bortolato A; Robbason B; Abel R; Bhat S
    J Chem Inf Model; 2019 Sep; 59(9):3782-3793. PubMed ID: 31404495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of scoring-assisted generative exploration (SAGE) and its application to dual inhibitor design for acetylcholinesterase and monoamine oxidase B.
    Lim H
    J Cheminform; 2024 May; 16(1):59. PubMed ID: 38790018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaffold-Constrained Molecular Generation.
    Langevin M; Minoux H; Levesque M; Bianciotto M
    J Chem Inf Model; 2020 Dec; 60(12):5637-5646. PubMed ID: 33301333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COATI: Multimodal Contrastive Pretraining for Representing and Traversing Chemical Space.
    Kaufman B; Williams EC; Underkoffler C; Pederson R; Mardirossian N; Watson I; Parkhill J
    J Chem Inf Model; 2024 Feb; 64(4):1145-1157. PubMed ID: 38316665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in multiparameter optimization methods for de novo drug design.
    Segall M
    Expert Opin Drug Discov; 2014 Jul; 9(7):803-17. PubMed ID: 24793080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An
    Bung N; Krishnan SR; Roy A
    J Chem Inf Model; 2022 Jun; 62(11):2685-2695. PubMed ID: 35581002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Algorithm-Based Receptor Ligand: A Genetic Algorithm-Guided Generative Model to Boost the Novelty and Drug-Likeness of Molecules in a Sampling Chemical Space.
    Wang M; Wu Z; Wang J; Weng G; Kang Y; Pan P; Li D; Deng Y; Yao X; Bing Z; Hsieh CY; Hou T
    J Chem Inf Model; 2024 Feb; 64(4):1213-1228. PubMed ID: 38302422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of Ultralarge Compound Collections for Drug Discovery.
    Warr WA; Nicklaus MC; Nicolaou CA; Rarey M
    J Chem Inf Model; 2022 May; 62(9):2021-2034. PubMed ID: 35421301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation.
    Sullivan DJ; Kaludov N; Martinov MN
    Malar J; 2011 Sep; 10():274. PubMed ID: 21933377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
    Meanwell NA
    Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Pareto Algorithm for Efficient De Novo Design of Multi-functional Molecules.
    Daeyaert F; Deem MW
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 28124835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
    Hartenfeller M; Proschak E; Schüller A; Schneider G
    Chem Biol Drug Des; 2008 Jul; 72(1):16-26. PubMed ID: 18564216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.