These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35417235)

  • 1. Spontaneous and rapid electro-actuated snapping of constrained polyelectrolyte hydrogels.
    Li CY; Zheng SY; Hao XP; Hong W; Zheng Q; Wu ZL
    Sci Adv; 2022 Apr; 8(15):eabm9608. PubMed ID: 35417235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities.
    Chi Y; Li Y; Zhao Y; Hong Y; Tang Y; Yin J
    Adv Mater; 2022 May; 34(19):e2110384. PubMed ID: 35172026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-actuated hydrogel walkers with dual responsive legs.
    Morales D; Palleau E; Dickey MD; Velev OD
    Soft Matter; 2014 Mar; 10(9):1337-48. PubMed ID: 24651405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nature-Inspired Sequential Shape Transformation of Energy-Patterned Hydrogel Sheets.
    Fan W; Yin J; Yi C; Xia Y; Nie Z; Sui K
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4878-4886. PubMed ID: 31904933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bistable Joints Enable the Morphing of Hydrogel Sheets with Multistable Configurations.
    Li CY; Jiao D; Hao XP; Hong W; Zheng Q; Wu ZL
    Adv Mater; 2023 Apr; 35(15):e2211802. PubMed ID: 36680376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manta Ray Inspired Soft Robot Fish with Tough Hydrogels as Structural Elements.
    Zhang CW; Zou W; Yu HC; Hao XP; Li G; Li T; Yang W; Wu ZL; Zheng Q
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52430-52439. PubMed ID: 36351752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Bistable Dielectric Elastomer Actuators: Programmable Shapes and Application as Binary Valves.
    Wei S; Ghosh TK
    Soft Robot; 2022 Oct; 9(5):900-906. PubMed ID: 34726526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bi-Shell Valve for Fast Actuation of Soft Pneumatic Actuators via Shell Snapping Interaction.
    Qiao C; Liu L; Pasini D
    Adv Sci (Weinh); 2021 Aug; 8(15):e2100445. PubMed ID: 34061464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials.
    Fan W; Shan C; Guo H; Sang J; Wang R; Zheng R; Sui K; Nie Z
    Sci Adv; 2019 Apr; 5(4):eaav7174. PubMed ID: 31016242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programming Soft Shape-Morphing Systems by Harnessing Strain Mismatch and Snap-Through Bistability: A Review.
    Wu Y; Guo G; Wei Z; Qian J
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous snapping and jumping polymer gels.
    Kim Y; van den Berg J; Crosby AJ
    Nat Mater; 2021 Dec; 20(12):1695-1701. PubMed ID: 33526877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inflatable soft jumper inspired by shell snapping.
    Gorissen B; Melancon D; Vasios N; Torbati M; Bertoldi K
    Sci Robot; 2020 May; 5(42):. PubMed ID: 33022625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tough and electro-responsive hydrogel actuators with bidirectional bending behavior.
    Jiang H; Fan L; Yan S; Li F; Li H; Tang J
    Nanoscale; 2019 Jan; 11(5):2231-2237. PubMed ID: 30656330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A soft pneumatic bistable reinforced actuator bioinspired by Venus Flytrap with enhanced grasping capability.
    Wang X; Khara A; Chen C
    Bioinspir Biomim; 2020 Aug; 15(5):056017. PubMed ID: 32590362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks.
    Zhang X; Xue P; Yang X; Valenzuela C; Chen Y; Lv P; Wang Z; Wang L; Xu X
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11834-11841. PubMed ID: 35192332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precisely Controlling the Output Force of Hydrogel Actuator Based on Thermodynamic Nonequilibrium Temporary Deformation.
    Yin J; Zhang D; Xu Z; Fan W; Xia Y; Sui K
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):49042-49049. PubMed ID: 33113636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable and Bidirectional Bending of Soft Actuators Based on Janus Structure with Sticky Tough PAA-Clay Hydrogel.
    Zhao L; Huang J; Zhang Y; Wang T; Sun W; Tong Z
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11866-11873. PubMed ID: 28290198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Sustained Snapping Drives Autonomous Dancing and Motion in Free-Standing Wavy Rings.
    Zhao Y; Hong Y; Qi F; Chi Y; Su H; Yin J
    Adv Mater; 2023 Feb; 35(7):e2207372. PubMed ID: 36366927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction.
    Zhang H; Zeng H; Eklund A; Guo H; Priimagi A; Ikkala O
    Nat Nanotechnol; 2022 Dec; 17(12):1303-1310. PubMed ID: 36443600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.