These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 35417694)

  • 1. Transformation of an early-established motor circuit during maturation in zebrafish.
    Pallucchi I; Bertuzzi M; Michel JC; Miller AC; El Manira A
    Cell Rep; 2022 Apr; 39(2):110654. PubMed ID: 35417694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. V2a interneuron diversity tailors spinal circuit organization to control the vigor of locomotor movements.
    Song J; Dahlberg E; El Manira A
    Nat Commun; 2018 Aug; 9(1):3370. PubMed ID: 30135498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separate microcircuit modules of distinct v2a interneurons and motoneurons control the speed of locomotion.
    Ampatzis K; Song J; Ausborn J; El Manira A
    Neuron; 2014 Aug; 83(4):934-43. PubMed ID: 25123308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental switch in the function of inhibitory commissural V0d interneurons in zebrafish.
    Picton LD; Björnfors ER; Fontanel P; Pallucchi I; Bertuzzi M; El Manira A
    Curr Biol; 2022 Aug; 32(16):3515-3528.e4. PubMed ID: 35853456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo establishment of circuit modules restores locomotion after spinal cord injury in adult zebrafish.
    Huang CX; Wang Z; Cheng J; Zhu Z; Guan NN; Song J
    Cell Rep; 2022 Oct; 41(4):111535. PubMed ID: 36288693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling spinal locomotor circuits for movements in developing zebrafish.
    Roussel Y; Gaudreau SF; Kacer ER; Sengupta M; Bui TV
    Elife; 2021 Sep; 10():. PubMed ID: 34473059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A specialized spinal circuit for command amplification and directionality during escape behavior.
    Guan NN; Xu L; Zhang T; Huang CX; Wang Z; Dahlberg E; Wang H; Wang F; Pallucchi I; Hua Y; El Manira A; Song J
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34663699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular blueprints for spinal circuit modules controlling locomotor speed in zebrafish.
    Pallucchi I; Bertuzzi M; Madrid D; Fontanel P; Higashijima SI; El Manira A
    Nat Neurosci; 2024 Jan; 27(1):78-89. PubMed ID: 37919423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal Basis of Direction Control during Locomotion in Larval Zebrafish.
    Jay M; MacIver MA; McLean DL
    J Neurosci; 2023 May; 43(22):4062-4074. PubMed ID: 37127363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor neurons control locomotor circuit function retrogradely via gap junctions.
    Song J; Ampatzis K; Björnfors ER; El Manira A
    Nature; 2016 Jan; 529(7586):399-402. PubMed ID: 26760208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volume EM Reconstruction of Spinal Cord Reveals Wiring Specificity in Speed-Related Motor Circuits.
    Svara FN; Kornfeld J; Denk W; Bollmann JH
    Cell Rep; 2018 Jun; 23(10):2942-2954. PubMed ID: 29874581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple Rhythm-Generating Circuits Act in Tandem with Pacemaker Properties to Control the Start and Speed of Locomotion.
    Song J; Pallucchi I; Ausborn J; Ampatzis K; Bertuzzi M; Fontanel P; Picton LD; El Manira A
    Neuron; 2020 Mar; 105(6):1048-1061.e4. PubMed ID: 31982322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of excitation underlying locomotion in the spinal circuit of zebrafish.
    Eklöf-Ljunggren E; Haupt S; Ausborn J; Dehnisch I; Uhlén P; Higashijima S; El Manira A
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):5511-6. PubMed ID: 22431619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some principles of organization of spinal neurons underlying locomotion in zebrafish and their implications.
    Fetcho JR; McLean DL
    Ann N Y Acad Sci; 2010 Jun; 1198():94-104. PubMed ID: 20536924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active mechanosensory feedback during locomotion in the zebrafish spinal cord.
    Knafo S; Wyart C
    Curr Opin Neurobiol; 2018 Oct; 52():48-53. PubMed ID: 29704750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal cholinergic interneurons differentially control motoneuron excitability and alter the locomotor network operational range.
    Bertuzzi M; Ampatzis K
    Sci Rep; 2018 Jan; 8(1):1988. PubMed ID: 29386582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the rules of recruitment of excitatory interneurons in the adult zebrafish locomotor network.
    Ausborn J; Mahmood R; El Manira A
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):E3631-9. PubMed ID: 23236181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles Governing Locomotion in Vertebrates: Lessons From Zebrafish.
    Berg EM; Björnfors ER; Pallucchi I; Picton LD; El Manira A
    Front Neural Circuits; 2018; 12():73. PubMed ID: 30271327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taking a Big Step towards Understanding Locomotion.
    Wyart C
    Trends Neurosci; 2018 Dec; 41(12):869-870. PubMed ID: 30471663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.