BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35417799)

  • 1. An in silico model predicts the impact of scaffold design in large bone defect regeneration.
    Perier-Metz C; Cipitria A; Hutmacher DW; Duda GN; Checa S
    Acta Biomater; 2022 Jun; 145():329-341. PubMed ID: 35417799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechano-Biological Computer Model of Scaffold-Supported Bone Regeneration: Effect of Bone Graft and Scaffold Structure on Large Bone Defect Tissue Patterning.
    Perier-Metz C; Duda GN; Checa S
    Front Bioeng Biotechnol; 2020; 8():585799. PubMed ID: 33262976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial mechanical conditions within an optimized bone scaffold do not ensure bone regeneration - an in silico analysis.
    Perier-Metz C; Duda GN; Checa S
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1723-1731. PubMed ID: 34097188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
    Metz C; Duda GN; Checa S
    Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCL strut-like scaffolds appear superior to gyroid in terms of bone regeneration within a long bone large defect: An
    Jaber M; Poh PSP; Duda GN; Checa S
    Front Bioeng Biotechnol; 2022; 10():995266. PubMed ID: 36213070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects.
    Laubach M; Suresh S; Herath B; Wille ML; Delbrück H; Alabdulrahman H; Hutmacher DW; Hildebrand F
    J Orthop Translat; 2022 May; 34():73-84. PubMed ID: 35782964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration.
    Lee J; Huh SJ; Seok JM; Lee S; Byun H; Jang GN; Kim E; Kim SJ; Park SA; Kim SM; Shin H
    Acta Biomater; 2022 Mar; 140():730-744. PubMed ID: 34896633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model.
    Lee SH; Lee KG; Hwang JH; Cho YS; Lee KS; Jeong HJ; Park SH; Park Y; Cho YS; Lee BK
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():949-959. PubMed ID: 30813102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep.
    Pobloth AM; Checa S; Razi H; Petersen A; Weaver JC; Schmidt-Bleek K; Windolf M; Tatai AÁ; Roth CP; Schaser KD; Duda GN; Schwabe P
    Sci Transl Med; 2018 Jan; 10(423):. PubMed ID: 29321260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.
    Ribeiro FO; Gómez-Benito MJ; Folgado J; Fernandes PR; García-Aznar JM
    PLoS One; 2015; 10(6):e0127722. PubMed ID: 26043112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of platelet-rich fibrin exudate addition to porous poly(lactic-co-glycolic acid) scaffold in bone healing: An in vivo study.
    Witek L; Tian H; Tovar N; Torroni A; Neiva R; Gil LF; Coelho PG
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1304-1310. PubMed ID: 31429195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds.
    Vidal L; Kampleitner C; Krissian S; Brennan MÁ; Hoffmann O; Raymond Y; Maazouz Y; Ginebra MP; Rosset P; Layrolle P
    Sci Rep; 2020 Apr; 10(1):7068. PubMed ID: 32341459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large defect-tailored composite scaffolds for in vivo bone regeneration.
    Ronca A; Guarino V; Raucci MG; Salamanna F; Martini L; Zeppetelli S; Fini M; Kon E; Filardo G; Marcacci M; Ambrosio L
    J Biomater Appl; 2014 Nov; 29(5):715-27. PubMed ID: 24951457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanobiological computer optimization framework to design scaffolds to enhance bone regeneration.
    Perier-Metz C; Duda GN; Checa S
    Front Bioeng Biotechnol; 2022; 10():980727. PubMed ID: 36159680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of perforated demineralized dentin scaffold on bone regeneration in critical-size sheep iliac defects.
    Kabir MA; Murata M; Akazawa T; Kusano K; Yamada K; Ito M
    Clin Oral Implants Res; 2017 Nov; 28(11):e227-e235. PubMed ID: 28097682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing.
    Schlichting K; Schell H; Kleemann RU; Schill A; Weiler A; Duda GN; Epari DR
    Am J Sports Med; 2008 Dec; 36(12):2379-91. PubMed ID: 18952905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.