BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35417897)

  • 1. Radiative decay of an emitter due to non-Markovian interactions with dissipating matter.
    Jain K; Venkatapathi M
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35417897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Coupling Dynamics of a Quantum Emitter near a Topological Insulator Nanoparticle.
    Thanopulos I; Yannopapas V; Paspalakis E
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of plasmon emission and dynamics at the transition from classical to quantum coupling.
    Kravtsov V; Berweger S; Atkin JM; Raschke MB
    Nano Lett; 2014 Sep; 14(9):5270-5. PubMed ID: 25089501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic simulation of giant atom decay.
    Longhi S
    Opt Lett; 2020 Jun; 45(11):3017-3020. PubMed ID: 32479447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lasing in dark and bright modes of a finite-sized plasmonic lattice.
    Hakala TK; Rekola HT; Väkeväinen AI; Martikainen JP; Nečada M; Moilanen AJ; Törmä P
    Nat Commun; 2017 Jan; 8():13687. PubMed ID: 28045047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective dynamics and entanglement of two distant atoms embedded into single-negative index material.
    Fang W; Li GX; Yang Y; Ficek Z
    Opt Express; 2017 Feb; 25(3):1867-1888. PubMed ID: 29519039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep strong light-matter coupling in plasmonic nanoparticle crystals.
    Mueller NS; Okamura Y; Vieira BGM; Juergensen S; Lange H; Barros EB; Schulz F; Reich S
    Nature; 2020 Jul; 583(7818):780-784. PubMed ID: 32728238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy.
    Zu S; Han T; Jiang M; Liu Z; Jiang Q; Lin F; Zhu X; Fang Z
    Nano Lett; 2019 Feb; 19(2):775-780. PubMed ID: 30596507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit.
    Santhosh K; Bitton O; Chuntonov L; Haran G
    Nat Commun; 2016 Jun; 7():ncomms11823. PubMed ID: 27293116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires.
    Mokkapati S; Saxena D; Tan HH; Jagadish C
    Small; 2013 Dec; 9(23):3964-9. PubMed ID: 23757173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation dynamics of a quantum emitter resonantly coupled to a coherent state of a localized surface plasmon.
    Nerkararyan KV; Bozhevolnyi SI
    Faraday Discuss; 2015; 178():295-306. PubMed ID: 25736718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures.
    Sun J; Li Y; Hu H; Chen W; Zheng D; Zhang S; Xu H
    Nanoscale; 2021 Mar; 13(8):4408-4419. PubMed ID: 33605947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency tunable single photon diode based on giant atom coupling to a waveguide.
    Cai G; Lu Y; Ma XS; Cheng MT; Huang X
    Opt Express; 2023 Sep; 31(20):33015-33025. PubMed ID: 37859090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna.
    Marinica DC; Lourenço-Martins H; Aizpurua J; Borisov AG
    Nano Lett; 2013; 13(12):5972-8. PubMed ID: 24206447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions.
    Zhou W; Odom TW
    Nat Nanotechnol; 2011 May; 6(7):423-7. PubMed ID: 21572429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence of a Plasmonic Molecule.
    Huang D; Byers CP; Wang LY; Hoggard A; Hoener B; Dominguez-Medina S; Chen S; Chang WS; Landes CF; Link S
    ACS Nano; 2015 Jul; 9(7):7072-9. PubMed ID: 26165983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement.
    Li GC; Zhang YL; Jiang J; Luo Y; Lei DY
    ACS Nano; 2017 Mar; 11(3):3067-3080. PubMed ID: 28291332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional energy transport in strongly coupled chiral quantum emitter plasmonic nanostructures.
    Gettapola K; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2021 Sep; 33(47):. PubMed ID: 34425568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between a single metallic nanoparticle and chiral molecular J-aggregates in the strong coupling regime and the weak coupling regime.
    Song G; Guo J; Duan G; Jiao R; Yu L
    Nanotechnology; 2020 Aug; 31(34):345202. PubMed ID: 32380488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.