These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35418074)
1. Nucleosome positioning based on DNA sequence embedding and deep learning. Han GS; Li Q; Li Y BMC Genomics; 2022 Apr; 23(Suppl 1):301. PubMed ID: 35418074 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis and prediction of nucleosome positioning using integrative feature representation and machine learning algorithms. Han GS; Li Q; Li Y BMC Bioinformatics; 2021 Jun; 22(Suppl 6):129. PubMed ID: 34078256 [TBL] [Abstract][Full Text] [Related]
3. DeepNup: Prediction of Nucleosome Positioning from DNA Sequences Using Deep Neural Network. Zhou Y; Wu T; Jiang Y; Li Y; Li K; Quan L; Lyu Q Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360220 [TBL] [Abstract][Full Text] [Related]
4. LeNup: learning nucleosome positioning from DNA sequences with improved convolutional neural networks. Zhang J; Peng W; Wang L Bioinformatics; 2018 May; 34(10):1705-1712. PubMed ID: 29329398 [TBL] [Abstract][Full Text] [Related]
5. An analysis and prediction of nucleosome positioning based on information content. Xing YQ; Liu GQ; Zhao XJ; Cai L Chromosome Res; 2013 Mar; 21(1):63-74. PubMed ID: 23435498 [TBL] [Abstract][Full Text] [Related]
6. Deep learning architectures for prediction of nucleosome positioning from sequences data. Di Gangi M; Lo Bosco G; Rizzo R BMC Bioinformatics; 2018 Nov; 19(Suppl 14):418. PubMed ID: 30453896 [TBL] [Abstract][Full Text] [Related]
7. [Identification of nucleosome positioning using support vector machine method based on comprehensive DNA sequence feature]. Cui Y; Xu Z; Li J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Jun; 37(3):496-501. PubMed ID: 32597092 [TBL] [Abstract][Full Text] [Related]
8. Visible periodicity of strong nucleosome DNA sequences. Salih B; Tripathi V; Trifonov EN J Biomol Struct Dyn; 2015; 33(1):1-9. PubMed ID: 24266748 [TBL] [Abstract][Full Text] [Related]
9. iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition. Tahir M; Hayat M; Khan SA Mol Genet Genomics; 2019 Feb; 294(1):199-210. PubMed ID: 30291426 [TBL] [Abstract][Full Text] [Related]
10. Prediction of nucleosome positioning by the incorporation of frequencies and distributions of three different nucleotide segment lengths into a general pseudo k-tuple nucleotide composition. Awazu A Bioinformatics; 2017 Jan; 33(1):42-48. PubMed ID: 27563027 [TBL] [Abstract][Full Text] [Related]
11. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Guo SH; Deng EZ; Xu LQ; Ding H; Lin H; Chen W; Chou KC Bioinformatics; 2014 Jun; 30(11):1522-9. PubMed ID: 24504871 [TBL] [Abstract][Full Text] [Related]
12. NucPosPred: Predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC. Jia C; Yang Q; Zou Q J Theor Biol; 2018 Aug; 450():15-21. PubMed ID: 29678692 [TBL] [Abstract][Full Text] [Related]
13. Prediction of nucleosome positioning in genomes: limits and perspectives of physical and bioinformatic approaches. De Santis P; Morosetti S; Scipioni A J Biomol Struct Dyn; 2010 Jun; 27(6):747-64. PubMed ID: 20232931 [TBL] [Abstract][Full Text] [Related]
15. Sequence signatures of nucleosome positioning in Caenorhabditis elegans. Chen K; Wang L; Yang M; Liu J; Xin C; Hu S; Yu J Genomics Proteomics Bioinformatics; 2010 Jun; 8(2):92-102. PubMed ID: 20691394 [TBL] [Abstract][Full Text] [Related]
16. ZCMM: A Novel Method Using Z-Curve Theory- Based and Position Weight Matrix for Predicting Nucleosome Positioning. Cui Y; Xu Z; Li J Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31569414 [TBL] [Abstract][Full Text] [Related]
17. CORENup: a combination of convolutional and recurrent deep neural networks for nucleosome positioning identification. Amato D; Bosco GL; Rizzo R BMC Bioinformatics; 2020 Sep; 21(Suppl 8):326. PubMed ID: 32938377 [TBL] [Abstract][Full Text] [Related]
18. An automated framework for evaluation of deep learning models for splice site predictions. Zabardast A; Tamer EG; Son YA; Yılmaz A Sci Rep; 2023 Jun; 13(1):10221. PubMed ID: 37353532 [TBL] [Abstract][Full Text] [Related]
19. Three sequence rules for chromatin. Cohanim AB; Kashi Y; Trifonov EN J Biomol Struct Dyn; 2006 Apr; 23(5):559-66. PubMed ID: 16494506 [TBL] [Abstract][Full Text] [Related]
20. A deformation energy-based model for predicting nucleosome dyads and occupancy. Liu G; Xing Y; Zhao H; Wang J; Shang Y; Cai L Sci Rep; 2016 Apr; 6():24133. PubMed ID: 27053067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]