These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3541827)

  • 1. Ethylene formation by cell-free extracts of Escherichia coli.
    Ince JE; Knowles CJ
    Arch Microbiol; 1986 Nov; 146(2):151-8. PubMed ID: 3541827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine.
    Mansouri S; Bunch AW
    J Gen Microbiol; 1989 Nov; 135(11):2819-27. PubMed ID: 2559143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The physiology of L-methionine catabolism to the secondary metabolite ethylene by Escherichia coli.
    Shipston N; Bunch AW
    J Gen Microbiol; 1989 Jun; 135(6):1489-97. PubMed ID: 2693600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene formation by cultures of Escherichia coli.
    Ince JE; Knowles CJ
    Arch Microbiol; 1985 Apr; 141(3):209-13. PubMed ID: 3890791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli.
    Primrose SB
    J Gen Microbiol; 1977 Feb; 98(2):519-28. PubMed ID: 16080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of ethylene. 4-methylmercapto-2-oxobutyric acid: an intermediate in the formation from methionine.
    Mapson LW; March JF; Wardale DA
    Biochem J; 1969 Dec; 115(4):653-61. PubMed ID: 5357015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and effects of trace elements and electron complexes on 2-keto-4-methylthiobutyric acid-dependent biosynthesis of ethylene in soil.
    Arshad M; Nazli ZH; Khalid A; Zahir ZA
    Lett Appl Microbiol; 2004; 39(3):306-9. PubMed ID: 15287880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An NADH:Fe(III)EDTA oxidoreductase from Cryptococcus albidus: an enzyme involved in ethylene production in vivo?
    Fukuda H; Takahashi M; Fujii T; Tazaki M; Ogawa T
    FEMS Microbiol Lett; 1989 Jul; 51(1):107-11. PubMed ID: 2792734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of ethylene by Escherichia coli.
    Primrose SB
    J Gen Microbiol; 1976 Jul; 95(1):159-65. PubMed ID: 8586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of substrate-dependent microbialy produced ethylene on plant growth].
    Khalid A; Akhtar MH; Makhmood MH; Arshad M
    Mikrobiologiia; 2006; 75(2):277-83. PubMed ID: 16758878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylene production from alpha-oxo-gamma-methylthiobutyric acid is a sensitive measure of ligninolytic activity by Phanerochaete chrysosporium.
    Kelley RL; Reddy CA
    Biochem J; 1982 Aug; 206(2):423-5. PubMed ID: 7150253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of ethylene. Formation of ethylene from methional by a cell-free enzyme system from cauliflower florets.
    Mapson LW; Wardale DA
    Biochem J; 1967 Feb; 102(2):574-85. PubMed ID: 6032971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of ethylene-forming system in rat liver extract.
    Fu PC; Zic V; Ozimy K
    Biochim Biophys Acta; 1979 Jul; 585(3):427-34. PubMed ID: 486541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production.
    de Zélicourt A; Synek L; Saad MM; Alzubaidy H; Jalal R; Xie Y; Andrés-Barrao C; Rolli E; Guerard F; Mariappan KG; Daur I; Colcombet J; Benhamed M; Depaepe T; Van Der Straeten D; Hirt H
    PLoS Genet; 2018 Mar; 14(3):e1007273. PubMed ID: 29554117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of biotin: synthesis of 7,8-diaminopelargonic acid in cell-free extracts of Escherichia coli.
    Pai CH
    J Bacteriol; 1971 Mar; 105(3):793-800. PubMed ID: 4926682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethylene biosynthesis in Botrytis cinerea.
    Chagué V; Elad Y; Barakat R; Tudzynski P; Sharon A
    FEMS Microbiol Ecol; 2002 May; 40(2):143-9. PubMed ID: 19709221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit.
    Gonda I; Lev S; Bar E; Sikron N; Portnoy V; Davidovich-Rikanati R; Burger J; Schaffer AA; Tadmor Y; Giovannonni JJ; Huang M; Fei Z; Katzir N; Fait A; Lewinsohn E
    Plant J; 2013 May; 74(3):458-72. PubMed ID: 23402686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis.
    North JA; Narrowe AB; Xiong W; Byerly KM; Zhao G; Young SJ; Murali S; Wildenthal JA; Cannon WR; Wrighton KC; Hettich RL; Tabita FR
    Science; 2020 Aug; 369(6507):1094-1098. PubMed ID: 32855335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur compound production by Geotrichum candidum from L-methionine: importance of the transamination step.
    Bonnarme P; Arfi K; Dury C; Helinck S; Yvon M; Spinnler HE
    FEMS Microbiol Lett; 2001 Dec; 205(2):247-52. PubMed ID: 11750811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of 13C nuclear magnetic resonance and gas chromatography to examine methionine catabolism by lactococci.
    Gao S; Mooberry ES; Steele JL
    Appl Environ Microbiol; 1998 Dec; 64(12):4670-5. PubMed ID: 9835547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.