These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 35418297)
1. Integration of Aspergillus niger transcriptomic profile with metabolic model identifies potential targets to optimise citric acid production from lignocellulosic hydrolysate. Upton DJ; Kaushal M; Whitehead C; Faas L; Gomez LD; McQueen-Mason SJ; Srivastava S; Wood AJ Biotechnol Biofuels Bioprod; 2022 Jan; 15(1):4. PubMed ID: 35418297 [TBL] [Abstract][Full Text] [Related]
2. In silico evolution of Upton DJ; McQueen-Mason SJ; Wood AJ Biotechnol Biofuels; 2020; 13():27. PubMed ID: 32123544 [TBL] [Abstract][Full Text] [Related]
3. Reconstruction of a genome-scale metabolic model and in-silico flux analysis of Aspergillus tubingensis: a non-mycotoxinogenic citric acid-producing fungus. Kaushal M; Upton DJ; Gupta JK; Wood AJ; Srivastava S Biotechnol Biofuels Bioprod; 2024 May; 17(1):70. PubMed ID: 38807234 [TBL] [Abstract][Full Text] [Related]
4. An accurate description of Upton DJ; McQueen-Mason SJ; Wood AJ Biotechnol Biofuels; 2017; 10():258. PubMed ID: 29151887 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering to improve production of 3-hydroxypropionic acid from corn-stover hydrolysate in Aspergillus species. Dai Z; Pomraning KR; Deng S; Kim J; Campbell KB; Robles AL; Hofstad BA; Munoz N; Gao Y; Lemmon T; Swita MS; Zucker JD; Kim YM; Burnum-Johnson KE; Magnuson JK Biotechnol Biofuels Bioprod; 2023 Mar; 16(1):53. PubMed ID: 36991437 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomics identify the triggering of citrate export as the key event caused by manganese deficiency in Fekete E; Bíró V; Márton A; Bakondi-Kovács I; Sándor E; Kovács B; Geoffrion N; Tsang A; Kubicek CP; Karaffa L Microbiol Spectr; 2024 Nov; 12(11):e0190624. PubMed ID: 39377610 [TBL] [Abstract][Full Text] [Related]
7. Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties. Melzer G; Esfandabadi ME; Franco-Lara E; Wittmann C BMC Syst Biol; 2009 Dec; 3():120. PubMed ID: 20035624 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR-Cas9 system for succinic acid production from renewable biomass. Yang L; Henriksen MM; Hansen RS; Lübeck M; Vang J; Andersen JE; Bille S; Lübeck PS Biotechnol Biofuels; 2020 Dec; 13(1):206. PubMed ID: 33317620 [TBL] [Abstract][Full Text] [Related]
9. Citric acid from Behera BC Crit Rev Microbiol; 2020 Nov; 46(6):727-749. PubMed ID: 33044884 [TBL] [Abstract][Full Text] [Related]
10. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Tong Z; Zheng X; Tong Y; Shi YC; Sun J Microb Cell Fact; 2019 Feb; 18(1):28. PubMed ID: 30717739 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of a C Yang L; Christakou E; Vang J; Lübeck M; Lübeck PS Microb Cell Fact; 2017 Mar; 16(1):43. PubMed ID: 28288640 [TBL] [Abstract][Full Text] [Related]
12. Xylitol production from plant biomass by Aspergillus niger through metabolic engineering. Meng J; Chroumpi T; Mäkelä MR; de Vries RP Bioresour Technol; 2022 Jan; 344(Pt A):126199. PubMed ID: 34710597 [TBL] [Abstract][Full Text] [Related]
13. Improving citric acid production of an industrial Aspergillus niger CGMCC 10142: identification and overexpression of a high-affinity glucose transporter with different promoters. Xue X; Bi F; Liu B; Li J; Zhang L; Zhang J; Gao Q; Wang D Microb Cell Fact; 2021 Aug; 20(1):168. PubMed ID: 34446025 [TBL] [Abstract][Full Text] [Related]
14. The effects of external Mn Fejes B; Ouedraogo JP; Fekete E; Sándor E; Flipphi M; Soós Á; Molnár ÁP; Kovács B; Kubicek CP; Tsang A; Karaffa L Microb Cell Fact; 2020 Jan; 19(1):17. PubMed ID: 32000778 [TBL] [Abstract][Full Text] [Related]
15. Role of different additives and metallic micro minerals on the enhanced citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials. Ali S; Haq IU J Basic Microbiol; 2005; 45(1):3-11. PubMed ID: 15678560 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous saccharification and aerobic fermentation of high titer cellulosic citric acid by filamentous fungus Aspergillus niger. Hou W; Bao J Bioresour Technol; 2018 Apr; 253():72-78. PubMed ID: 29331516 [TBL] [Abstract][Full Text] [Related]
17. Citric acid production by selected mutants of Aspergillus niger from cane molasses. Ikram-Ul H; Ali S; Qadeer MA; Iqbal J Bioresour Technol; 2004 Jun; 93(2):125-30. PubMed ID: 15051073 [TBL] [Abstract][Full Text] [Related]
18. Improved Production of Malic Acid in Xu Y; Zhou Y; Cao W; Liu H ACS Synth Biol; 2020 Jun; 9(6):1418-1425. PubMed ID: 32379964 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of an industrial Xie H; Ma Q; Wei D; Wang F 3 Biotech; 2020 Mar; 10(3):113. PubMed ID: 32117674 [TBL] [Abstract][Full Text] [Related]
20. Disruption or reduced expression of the orotidine-5'-decarboxylase gene pyrG increases citric acid production: a new discovery during recyclable genome editing in Aspergillus niger. Zhang L; Zheng X; Cairns TC; Zhang Z; Wang D; Zheng P; Sun J Microb Cell Fact; 2020 Mar; 19(1):76. PubMed ID: 32209089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]