BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35418348)

  • 21. Histone butyrylation in the mouse intestine is mediated by the microbiota and associated with regulation of gene expression.
    Gates LA; Reis BS; Lund PJ; Paul MR; Leboeuf M; Djomo AM; Nadeem Z; Lopes M; Vitorino FN; Unlu G; Carroll TS; Birsoy K; Garcia BA; Mucida D; Allis CD
    Nat Metab; 2024 Apr; 6(4):697-707. PubMed ID: 38413806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism.
    Etier A; Dumetz F; Chéreau S; Ponts N
    Toxins (Basel); 2022 Apr; 14(5):. PubMed ID: 35622565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defining Metabolic and Nonmetabolic Regulation of Histone Acetylation by NSAID Chemotypes.
    Shrimp JH; Garlick JM; Tezil T; Sorum AW; Worth AJ; Blair IA; Verdin E; Snyder NW; Meier JL
    Mol Pharm; 2018 Mar; 15(3):729-736. PubMed ID: 29240439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond histone acetylation-writing and erasing histone acylations.
    Zhao S; Zhang X; Li H
    Curr Opin Struct Biol; 2018 Dec; 53():169-177. PubMed ID: 30391813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactive Acyl-CoA Species Modify Proteins and Induce Carbon Stress.
    Trub AG; Hirschey MD
    Trends Biochem Sci; 2018 May; 43(5):369-379. PubMed ID: 29478872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chiral Posttranslational Modification to Lysine ε-Amino Groups.
    Moreno-Yruela C; Bæk M; Monda F; Olsen CA
    Acc Chem Res; 2022 May; 55(10):1456-1466. PubMed ID: 35500056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coenzyme A levels influence protein acetylation, CoAlation and 4'-phosphopantetheinylation: Expanding the impact of a metabolic nexus molecule.
    Yu Y; Moretti IF; Grzeschik NA; Sibon OCM; Schepers H
    Biochim Biophys Acta Mol Cell Res; 2021 Apr; 1868(4):118965. PubMed ID: 33450307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combinations of histone post-translational modifications.
    Taylor BC; Young NL
    Biochem J; 2021 Feb; 478(3):511-532. PubMed ID: 33567070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein Acylation is a General Regulatory Mechanism in Biosynthetic Pathway of Acyl-CoA-Derived Natural Products.
    Xu JY; Xu Y; Xu Z; Zhai LH; Ye Y; Zhao Y; Chu X; Tan M; Ye BC
    Cell Chem Biol; 2018 Aug; 25(8):984-995.e6. PubMed ID: 29887264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acylations in cardiovascular biology and diseases, what's beyond acetylation.
    Sun X; Zhang Y; Chen XF; Tang X
    EBioMedicine; 2023 Jan; 87():104418. PubMed ID: 36584593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic Posttranslational Modifications: Chemical Catalyst-Driven Regioselective Histone Acylation of Native Chromatin.
    Amamoto Y; Aoi Y; Nagashima N; Suto H; Yoshidome D; Arimura Y; Osakabe A; Kato D; Kurumizaka H; Kawashima SA; Yamatsugu K; Kanai M
    J Am Chem Soc; 2017 Jun; 139(22):7568-7576. PubMed ID: 28534629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications.
    Simithy J; Sidoli S; Garcia BA
    Proteomics; 2018 Sep; 18(18):e1700309. PubMed ID: 29512899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatin as a key consumer in the metabolite economy.
    Diehl KL; Muir TW
    Nat Chem Biol; 2020 Jun; 16(6):620-629. PubMed ID: 32444835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein lysine four-carbon acylations in health and disease.
    Fang Y; Li X
    J Cell Physiol; 2024 Mar; 239(3):e30981. PubMed ID: 36815448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scratching the (lateral) surface of chromatin regulation by histone modifications.
    Tropberger P; Schneider R
    Nat Struct Mol Biol; 2013 Jun; 20(6):657-61. PubMed ID: 23739170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epigenetics Identifier screens reveal regulators of chromatin acylation and limited specificity of acylation antibodies.
    Kollenstart L; van der Horst SC; Vreeken K; Janssen GMC; Martino F; Vlaming H; van Veelen PA; van Leeuwen F; van Attikum H
    Sci Rep; 2021 Jun; 11(1):12795. PubMed ID: 34140538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromatin Regulation through Ubiquitin and Ubiquitin-like Histone Modifications.
    Vaughan RM; Kupai A; Rothbart SB
    Trends Biochem Sci; 2021 Apr; 46(4):258-269. PubMed ID: 33308996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modifying Chromatin by Histone Tail Clipping.
    Azad GK; Swagatika S; Kumawat M; Kumawat R; Tomar RS
    J Mol Biol; 2018 Sep; 430(18 Pt B):3051-3067. PubMed ID: 30009770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Operating on chromatin, a colorful language where context matters.
    Gardner KE; Allis CD; Strahl BD
    J Mol Biol; 2011 May; 409(1):36-46. PubMed ID: 21272588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Expanding Repertoire of Protein Acylations.
    Xu Y; Shi Z; Bao L
    Mol Cell Proteomics; 2022 Mar; 21(3):100193. PubMed ID: 34999219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.