These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 35418876)
1. Gene Editing for Inherited Red Blood Cell Diseases. Quintana-Bustamante O; Fañanas-Baquero S; Dessy-Rodriguez M; Ojeda-Pérez I; Segovia JC Front Physiol; 2022; 13():848261. PubMed ID: 35418876 [TBL] [Abstract][Full Text] [Related]
2. Genome editing approaches to β-hemoglobinopathies. Brusson M; Miccio A Prog Mol Biol Transl Sci; 2021; 182():153-183. PubMed ID: 34175041 [TBL] [Abstract][Full Text] [Related]
3. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Pavani G; Fabiano A; Laurent M; Amor F; Cantelli E; Chalumeau A; Maule G; Tachtsidi A; Concordet JP; Cereseto A; Mavilio F; Ferrari G; Miccio A; Amendola M Blood Adv; 2021 Mar; 5(5):1137-1153. PubMed ID: 33635334 [TBL] [Abstract][Full Text] [Related]
4. Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β Cosenza LC; Gasparello J; Romanini N; Zurlo M; Zuccato C; Gambari R; Finotti A Mol Ther Methods Clin Dev; 2021 Jun; 21():507-523. PubMed ID: 33997100 [TBL] [Abstract][Full Text] [Related]
5. Clinically relevant gene editing in hematopoietic stem cells for the treatment of pyruvate kinase deficiency. Fañanas-Baquero S; Quintana-Bustamante O; Dever DP; Alberquilla O; Sanchez-Dominguez R; Camarena J; Ojeda-Perez I; Dessy-Rodriguez M; Turk R; Schubert MS; Lattanzi A; Xu L; Lopez-Lorenzo JL; Bianchi P; Bueren JA; Behlke MA; Porteus M; Segovia JC Mol Ther Methods Clin Dev; 2021 Sep; 22():237-248. PubMed ID: 34485608 [TBL] [Abstract][Full Text] [Related]
6. Engineering of the endogenous Boontanrart MY; Mächler E; Ponta S; Nelis JC; Preiano VG; Corn JE Elife; 2023 Jun; 12():. PubMed ID: 37265399 [TBL] [Abstract][Full Text] [Related]
7. Hematopoietic-Stem-Cell-Targeted Gene-Addition and Gene-Editing Strategies for β-hemoglobinopathies. Drysdale CM; Nassehi T; Gamer J; Yapundich M; Tisdale JF; Uchida N Cell Stem Cell; 2021 Feb; 28(2):191-208. PubMed ID: 33545079 [TBL] [Abstract][Full Text] [Related]
8. Genome editing for sickle cell disease: still time to correct? Ceglie G; Lecis M; Canciani G; Algeri M; Frati G Front Pediatr; 2023; 11():1249275. PubMed ID: 38027257 [TBL] [Abstract][Full Text] [Related]
9. Hemoglobin disorders: lentiviral gene therapy in the starting blocks to enter clinical practice. Sii-Felice K; Giorgi M; Leboulch P; Payen E Exp Hematol; 2018 Aug; 64():12-32. PubMed ID: 29807062 [TBL] [Abstract][Full Text] [Related]
10. Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease. Ramadier S; Chalumeau A; Felix T; Othman N; Aknoun S; Casini A; Maule G; Masson C; De Cian A; Frati G; Brusson M; Concordet JP; Cavazzana M; Cereseto A; El Nemer W; Amendola M; Wattellier B; Meneghini V; Miccio A Mol Ther; 2022 Jan; 30(1):145-163. PubMed ID: 34418541 [TBL] [Abstract][Full Text] [Related]
11. Reactivation of γ-globin in adult β-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Li C; Psatha N; Sova P; Gil S; Wang H; Kim J; Kulkarni C; Valensisi C; Hawkins RD; Stamatoyannopoulos G; Lieber A Blood; 2018 Jun; 131(26):2915-2928. PubMed ID: 29789357 [TBL] [Abstract][Full Text] [Related]
12. Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Germino-Watnick P; Hinds M; Le A; Chu R; Liu X; Uchida N Cells; 2022 Jun; 11(11):. PubMed ID: 35681538 [TBL] [Abstract][Full Text] [Related]
14. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Khosravi MA; Abbasalipour M; Concordet JP; Berg JV; Zeinali S; Arashkia A; Azadmanesh K; Buch T; Karimipoor M Eur J Pharmacol; 2019 Jul; 854():398-405. PubMed ID: 31039344 [TBL] [Abstract][Full Text] [Related]
15. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Magrin E; Miccio A; Cavazzana M Blood; 2019 Oct; 134(15):1203-1213. PubMed ID: 31467062 [TBL] [Abstract][Full Text] [Related]
16. Co-Treatment of Erythroid Cells from β-Thalassemia Patients with CRISPR-Cas9-Based β Cosenza LC; Zuccato C; Zurlo M; Gambari R; Finotti A Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292612 [TBL] [Abstract][Full Text] [Related]
17. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Alayoubi AM; Khawaji ZY; Mohammed MA; Mercier FE Ann Hematol; 2024 Jun; 103(6):1805-1817. PubMed ID: 37736806 [TBL] [Abstract][Full Text] [Related]
20. A New Era for Hemoglobinopathies: More Than One Curative Option. Psatha N; Papayanni PG; Yannaki E Curr Gene Ther; 2017; 17(5):364-378. PubMed ID: 29357790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]