These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 35418968)
21. [Advances in mechanisms of nutrient exchange between mycorrhizal fungi and host plants]. Feng H; Meng PP; Dou Q; Zhang SX; Wang HH; Wang CY Ying Yong Sheng Tai Xue Bao; 2019 Oct; 30(10):3596-3604. PubMed ID: 31621248 [TBL] [Abstract][Full Text] [Related]
22. Effects of Pisolithus tinctorius and Cenococcum geophilum inoculation on pine in copper-contaminated soil to enhance phytoremediation. Wen Z; Shi L; Tang Y; Shen Z; Xia Y; Chen Y Int J Phytoremediation; 2017 Apr; 19(4):387-394. PubMed ID: 27739883 [TBL] [Abstract][Full Text] [Related]
23. Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis. Daghino S; Martino E; Perotto S Mycorrhiza; 2016 May; 26(4):263-74. PubMed ID: 26710764 [TBL] [Abstract][Full Text] [Related]
24. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833 [TBL] [Abstract][Full Text] [Related]
25. [Symbiosis between hyperaccumulators and arbuscular mycorrhizal fungi and their synergistic effect on the absorption and accumulation of heavy metals: a review]. Wang L; Wang G; Ma F; You Y Sheng Wu Gong Cheng Xue Bao; 2021 Oct; 37(10):3604-3621. PubMed ID: 34708614 [TBL] [Abstract][Full Text] [Related]
26. Metal tolerance in plants: Molecular and physicochemical interface determines the "not so heavy effect" of heavy metals. Thakur M; Praveen S; Divte PR; Mitra R; Kumar M; Gupta CK; Kalidindi U; Bansal R; Roy S; Anand A; Singh B Chemosphere; 2022 Jan; 287(Pt 1):131957. PubMed ID: 34450367 [TBL] [Abstract][Full Text] [Related]
27. Different response of perennial ryegrass-Epichloë endophyte symbiota to the elevated concentration of heavy metals in soil. Żurek G; Wiewióra B; Rybka K; Prokopiuk K J Appl Genet; 2022 Feb; 63(1):47-59. PubMed ID: 34546560 [TBL] [Abstract][Full Text] [Related]
28. Endophytic Microbial Consortia of Phytohormones-Producing Fungus Bilal S; Shahzad R; Khan AL; Kang SM; Imran QM; Al-Harrasi A; Yun BW; Lee IJ Front Plant Sci; 2018; 9():1273. PubMed ID: 30233618 [TBL] [Abstract][Full Text] [Related]
29. A Cr(VI)-tolerant strain, Pisolithus sp1, with a high accumulation capacity of Cr in mycelium and highly efficient assisting Pinus thunbergii for phytoremediation. Shi L; Deng X; Yang Y; Jia Q; Wang C; Shen Z; Chen Y Chemosphere; 2019 Jun; 224():862-872. PubMed ID: 30852466 [TBL] [Abstract][Full Text] [Related]
30. Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis. Reddy MS; Kour M; Aggarwal S; Ahuja S; Marmeisse R; Fraissinet-Tachet L Environ Microbiol; 2016 Sep; 18(8):2446-54. PubMed ID: 26626627 [TBL] [Abstract][Full Text] [Related]
31. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. Khan MIR; Chopra P; Chhillar H; Ahanger MA; Hussain SJ; Maheshwari C Plant Physiol Biochem; 2021 Jul; 164():260-278. PubMed ID: 34020167 [TBL] [Abstract][Full Text] [Related]
32. Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils. Chen Y; Nara K; Wen Z; Shi L; Xia Y; Shen Z; Lian C Mycorrhiza; 2015 Oct; 25(7):561-71. PubMed ID: 25720735 [TBL] [Abstract][Full Text] [Related]
33. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium. Sousa NR; Ramos MA; Marques AP; Castro PM Sci Total Environ; 2012 Jan; 414():63-7. PubMed ID: 22115613 [TBL] [Abstract][Full Text] [Related]
34. Differences in aluminum tolerance and immobilization between two indigenous ectomycorrhizal fungi Lactarius deliciosus and Pisolithus tinctorius from Southwest China's forest stands. Gu X; Jiang Y; Wang X; Jia H; Li J; Cui Y; Hu J; Mao Q; He X Ecotoxicol Environ Saf; 2021 Apr; 213():112042. PubMed ID: 33607336 [TBL] [Abstract][Full Text] [Related]
35. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems. Baskaran P; Hyvönen R; Berglund SL; Clemmensen KE; Ågren GI; Lindahl BD; Manzoni S New Phytol; 2017 Feb; 213(3):1452-1465. PubMed ID: 27748949 [TBL] [Abstract][Full Text] [Related]
36. How can a rare protected plant cope with the metal and metalloid soil pollution resulting from past industrial activities? Phytometabolites, antioxidant activities and root symbiosis involved in the metal tolerance of Astragalus tragacantha. Salducci MD; Folzer H; Issartel J; Rabier J; Masotti V; Prudent P; Affre L; Hardion L; Tatoni T; Laffont-Schwob I Chemosphere; 2019 Feb; 217():887-896. PubMed ID: 30458424 [TBL] [Abstract][Full Text] [Related]
37. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. Garcia K; Delaux PM; Cope KR; Ané JM New Phytol; 2015 Oct; 208(1):79-87. PubMed ID: 25982949 [TBL] [Abstract][Full Text] [Related]
38. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Göhre V; Paszkowski U Planta; 2006 May; 223(6):1115-22. PubMed ID: 16555102 [TBL] [Abstract][Full Text] [Related]
39. Molecular mechanisms of plant adaptive responses to heavy metals stress. Kosakivska IV; Babenko LM; Romanenko KO; Korotka IY; Potters G Cell Biol Int; 2021 Feb; 45(2):258-272. PubMed ID: 33200493 [TBL] [Abstract][Full Text] [Related]
40. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Riaz M; Kamran M; Fang Y; Wang Q; Cao H; Yang G; Deng L; Wang Y; Zhou Y; Anastopoulos I; Wang X J Hazard Mater; 2021 Jan; 402():123919. PubMed ID: 33254825 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]