These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 35418968)
41. Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. Wang G; Wang L; Ma F; You Y; Wang Y; Yang D J Hazard Mater; 2020 May; 389():121873. PubMed ID: 31862351 [TBL] [Abstract][Full Text] [Related]
42. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Tak HI; Ahmad F; Babalola OO Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811 [TBL] [Abstract][Full Text] [Related]
43. Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Azcón R; Perálvarez Mdel C; Roldán A; Barea JM Microb Ecol; 2010 May; 59(4):668-77. PubMed ID: 20013261 [TBL] [Abstract][Full Text] [Related]
44. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Zahoor M; Irshad M; Rahman H; Qasim M; Afridi SG; Qadir M; Hussain A Ecotoxicol Environ Saf; 2017 Aug; 142():139-149. PubMed ID: 28407499 [TBL] [Abstract][Full Text] [Related]
45. Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans. Alirzayeva E; Neumann G; Horst W; Allahverdiyeva Y; Specht A; Alizade V Environ Pollut; 2017 Jan; 220(Pt B):1024-1035. PubMed ID: 27890587 [TBL] [Abstract][Full Text] [Related]
46. Implications of metal accumulation mechanisms to phytoremediation. Memon AR; Schröder P Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014 [TBL] [Abstract][Full Text] [Related]
47. Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. Smith ME; Henkel TW; Catherine Aime M; Fremier AK; Vilgalys R New Phytol; 2011 Nov; 192(3):699-712. PubMed ID: 21883231 [TBL] [Abstract][Full Text] [Related]
48. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Janeeshma E; Puthur JT Arch Microbiol; 2020 Jan; 202(1):1-16. PubMed ID: 31552478 [TBL] [Abstract][Full Text] [Related]
49. Glycine Betaine Accumulation, Significance and Interests for Heavy Metal Tolerance in Plants. Ali S; Abbas Z; Seleiman MF; Rizwan M; YavaŞ İ; Alhammad BA; Shami A; Hasanuzzaman M; Kalderis D Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32679909 [TBL] [Abstract][Full Text] [Related]
50. Heavy metals-resistant bacteria (HM-RB): Potential bioremediators of heavy metals-stressed Spinacia oleracea plant. Desoky EM; Merwad AM; Semida WM; Ibrahim SA; El-Saadony MT; Rady MM Ecotoxicol Environ Saf; 2020 Jul; 198():110685. PubMed ID: 32387845 [TBL] [Abstract][Full Text] [Related]
51. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Citterio S; Prato N; Fumagalli P; Aina R; Massa N; Santagostino A; Sgorbati S; Berta G Chemosphere; 2005 Mar; 59(1):21-9. PubMed ID: 15698640 [TBL] [Abstract][Full Text] [Related]
52. Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays. Kafle A; Frank HER; Rose BD; Garcia K J Exp Bot; 2022 Mar; 73(5):1288-1300. PubMed ID: 34791191 [TBL] [Abstract][Full Text] [Related]
53. Water Relations, Gas Exchange, Chlorophyll Fluorescence and Electrolyte Leakage of Ectomycorrhizal Hachani C; Lamhamedi MS; Zine El Abidine A; Abassi M; Khasa DP; Béjaoui Z Microorganisms; 2021 Dec; 10(1):. PubMed ID: 35056506 [TBL] [Abstract][Full Text] [Related]
54. Influence of fungal endophytes on plant physiology is more pronounced under stress than well-watered conditions: a meta-analysis. Dastogeer KMG Planta; 2018 Dec; 248(6):1403-1416. PubMed ID: 30121874 [TBL] [Abstract][Full Text] [Related]
55. Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Joshi S; Gangola S; Bhandari G; Bhandari NS; Nainwal D; Rani A; Malik S; Slama P Front Microbiol; 2023; 14():1229828. PubMed ID: 37555069 [TBL] [Abstract][Full Text] [Related]
56. Variation in ectomycorrhizal fungal communities associated with Silver linden (Tilia tomentosa) within and across urban areas. Van Geel M; Yu K; Ceulemans T; Peeters G; van Acker K; Geerts W; Ramos MA; Serafim C; Kastendeuch P; Najjar G; Ameglio T; Ngao J; Saudreau M; Waud M; Lievens B; Castro PM; Somers B; Honnay O FEMS Microbiol Ecol; 2018 Dec; 94(12):. PubMed ID: 30312413 [TBL] [Abstract][Full Text] [Related]
57. Root fungal endophytes: identity, phylogeny and roles in plant tolerance to metal stress. Barberis L; Michalet S; Piola F; Binet P Fungal Biol; 2021 Apr; 125(4):326-345. PubMed ID: 33766311 [TBL] [Abstract][Full Text] [Related]
58. An Overview of Morpho-Physiological, Biochemical, and Molecular Responses of Sorghum Towards Heavy Metal Stress. Mishra D; Kumar S; Mishra BN Rev Environ Contam Toxicol; 2021; 256():155-177. PubMed ID: 33866418 [TBL] [Abstract][Full Text] [Related]
59. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. Saini S; Kaur N; Pati PK Ecotoxicol Environ Saf; 2021 Oct; 223():112578. PubMed ID: 34352573 [TBL] [Abstract][Full Text] [Related]
60. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil. Chaturvedi R; Favas P; Pratas J; Varun M; Paul MS Ecotoxicol Environ Saf; 2018 Feb; 148():318-326. PubMed ID: 29091834 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]