These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35419522)

  • 21. Superoxide Formation from Aqueous Reactions of Biogenic Secondary Organic Aerosols.
    Wei J; Fang T; Wong C; Lakey PSJ; Nizkorodov SA; Shiraiwa M
    Environ Sci Technol; 2021 Jan; 55(1):260-270. PubMed ID: 33352036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water Dramatically Accelerates the Decomposition of α-Hydroxyalkyl-Hydroperoxides in Aerosol Particles.
    Qiu J; Ishizuka S; Tonokura K; Colussi AJ; Enami S
    J Phys Chem Lett; 2019 Oct; 10(19):5748-5755. PubMed ID: 31498633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence and evolution of Criegee intermediates, hydroperoxides and secondary organic aerosols formed via ozonolysis of α-pinene.
    Bagchi A; Yu Y; Huang JH; Tsai CC; Hu WP; Wang CC
    Phys Chem Chem Phys; 2020 Mar; 22(12):6528-6537. PubMed ID: 32091071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unimolecular decomposition kinetics of the stabilised Criegee intermediates CH
    Stone D; Au K; Sime S; Medeiros DJ; Blitz M; Seakins PW; Decker Z; Sheps L
    Phys Chem Chem Phys; 2018 Oct; 20(38):24940-24954. PubMed ID: 30238099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Extended Computational Study of Criegee Intermediate-Alcohol Reactions.
    Watson NAI; Black JA; Stonelake TM; Knowles PJ; Beames JM
    J Phys Chem A; 2019 Jan; 123(1):218-229. PubMed ID: 30507197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-resolved, broadband UV-absorption spectrometry measurements of Criegee intermediate kinetics using a new photolytic precursor: unimolecular decomposition of CH
    Peltola J; Seal P; Inkilä A; Eskola A
    Phys Chem Chem Phys; 2020 Jun; 22(21):11797-11808. PubMed ID: 32347242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection.
    Giorio C; Campbell SJ; Bruschi M; Tampieri F; Barbon A; Toffoletti A; Tapparo A; Paijens C; Wedlake AJ; Grice P; Howe DJ; Kalberer M
    J Am Chem Soc; 2017 Mar; 139(11):3999-4008. PubMed ID: 28201872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of gas-phase ozonolysis of sabinene in the atmosphere.
    Wang L; Wang L
    Phys Chem Chem Phys; 2017 Sep; 19(35):24209-24218. PubMed ID: 28848955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics and Condensed-Phase Products in Multiphase Ozonolysis of an Unsaturated Triglyceride.
    Zhou Z; Zhou S; Abbatt JPD
    Environ Sci Technol; 2019 Nov; 53(21):12467-12475. PubMed ID: 31600435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with OH and D: reflected shock tube and theoretical studies.
    Sivaramakrishnan R; Su MC; Michael JV; Klippenstein SJ; Harding LB; Ruscic B
    J Phys Chem A; 2010 Sep; 114(35):9425-39. PubMed ID: 20715882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental and Computational Studies of Criegee Intermediate
    Liu S; Zhou X; Chen Y; Liu Y; Yu S; Takahashi K; Ding H; Ding Z; Yang X; Dong W
    J Phys Chem A; 2021 Oct; 125(39):8587-8594. PubMed ID: 34558283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Limononic Acid Oxidation by Hydroxyl Radicals and Ozone in the Aqueous Phase.
    Witkowski B; Jurdana S; Gierczak T
    Environ Sci Technol; 2018 Mar; 52(6):3402-3411. PubMed ID: 29444406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum chemical calculations on the mechanism and kinetics of ozone-initiated removal of p-coumaryl alcohol in the atmosphere.
    Sun Y; Chen X; Xu F; Wang X
    Chemosphere; 2020 Aug; 253():126744. PubMed ID: 32302911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of the Reactions between the Criegee Intermediate CH
    Tadayon SV; Foreman ES; Murray C
    J Phys Chem A; 2018 Jan; 122(1):258-268. PubMed ID: 29286244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2020 Jun; 22(24):13756-13763. PubMed ID: 32538397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene.
    Kristensen K; Jensen LN; Glasius M; Bilde M
    Environ Sci Process Impacts; 2017 Oct; 19(10):1220-1234. PubMed ID: 28805852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the Reaction Mechanism of Criegee Intermediate CH
    Xu K; Wang W; Wei W; Feng W; Sun Q; Li P
    J Phys Chem A; 2017 Sep; 121(38):7236-7245. PubMed ID: 28853572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions.
    Newland MJ; Rickard AR; Alam MS; Vereecken L; Muñoz A; Ródenas M; Bloss WJ
    Phys Chem Chem Phys; 2015 Feb; 17(6):4076-88. PubMed ID: 25562069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.