These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35419601)

  • 41. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos.
    Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X
    Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional analysis of β-ketoacyl-CoA synthase from biofuel feedstock Thlaspi arvense reveals differences in the triacylglycerol biosynthetic pathway among Brassicaceae.
    Claver A; de la Vega M; Rey-Giménez R; Luján MÁ; Picorel R; López MV; Alfonso M
    Plant Mol Biol; 2020 Oct; 104(3):283-296. PubMed ID: 32740897
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oil Biosynthesis in Underground Oil-Rich Storage Vegetative Tissue: Comparison of Cyperus esculentus Tuber with Oil Seeds and Fruits.
    Yang Z; Ji H; Liu D
    Plant Cell Physiol; 2016 Dec; 57(12):2519-2540. PubMed ID: 27742886
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis.
    Kelly AA; Quettier AL; Shaw E; Eastmond PJ
    Plant Physiol; 2011 Oct; 157(2):866-75. PubMed ID: 21825108
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis.
    Pouvreau B; Baud S; Vernoud V; Morin V; Py C; Gendrot G; Pichon JP; Rouster J; Paul W; Rogowsky PM
    Plant Physiol; 2011 Jun; 156(2):674-86. PubMed ID: 21474435
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development.
    Zhang M; Fan J; Taylor DC; Ohlrogge JB
    Plant Cell; 2009 Dec; 21(12):3885-901. PubMed ID: 20040537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developmental control of Arabidopsis seed oil biosynthesis.
    Wang H; Guo J; Lambert KN; Lin Y
    Planta; 2007 Aug; 226(3):773-83. PubMed ID: 17522888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Triacylglycerol biosynthesis in shaded seeds of tung tree (Vernicia fordii) is regulated in part by Homeodomain Leucine Zipper 21.
    Zhang L; Wu P; Li W; Feng T; Shockey J; Chen L; Zhang L; Lü S
    Plant J; 2021 Dec; 108(6):1735-1753. PubMed ID: 34643970
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterologous Expression of
    Liu Y; Han J; Li Z; Jiang Z; Luo L; Zhang Y; Chen M; Yang Y; Liu Z
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457027
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The multistress-induced Translocator protein (TSPO) differentially modulates storage lipids metabolism in seeds and seedlings.
    Jurkiewicz P; Melser S; Maucourt M; Ayeb H; Veljanovski V; Maneta-Peyret L; Hooks M; Rolin D; Moreau P; Batoko H
    Plant J; 2018 Oct; 96(2):274-286. PubMed ID: 30003614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Plastid Phosphatidylglycerol Lipase Contributes to the Export of Acyl Groups from Plastids for Seed Oil Biosynthesis.
    Wang K; Froehlich JE; Zienkiewicz A; Hersh HL; Benning C
    Plant Cell; 2017 Jul; 29(7):1678-1696. PubMed ID: 28687655
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition.
    Dussert S; Guerin C; Andersson M; Joët T; Tranbarger TJ; Pizot M; Sarah G; Omore A; Durand-Gasselin T; Morcillo F
    Plant Physiol; 2013 Jul; 162(3):1337-58. PubMed ID: 23735505
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.
    Li QT; Lu X; Song QX; Chen HW; Wei W; Tao JJ; Bian XH; Shen M; Ma B; Zhang WK; Bi YD; Li W; Lai YC; Lam SM; Shui GH; Chen SY; Zhang JS
    Plant Physiol; 2017 Apr; 173(4):2208-2224. PubMed ID: 28184009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The WRKY6 transcription factor affects seed oil accumulation and alters fatty acid compositions in Arabidopsis thaliana.
    Song G; Li X; Munir R; Khan AR; Azhar W; Yasin MU; Jiang Q; Bancroft I; Gan Y
    Physiol Plant; 2020 Aug; 169(4):612-624. PubMed ID: 32129896
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis.
    Siloto RM; Findlay K; Lopez-Villalobos A; Yeung EC; Nykiforuk CL; Moloney MM
    Plant Cell; 2006 Aug; 18(8):1961-74. PubMed ID: 16877495
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves.
    Yurchenko O; Shockey JM; Gidda SK; Silver MI; Chapman KD; Mullen RT; Dyer JM
    Plant Biotechnol J; 2017 Aug; 15(8):1010-1023. PubMed ID: 28083898
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis.
    Baud S; Mendoza MS; To A; Harscoët E; Lepiniec L; Dubreucq B
    Plant J; 2007 Jun; 50(5):825-38. PubMed ID: 17419836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A non-canonical caleosin from Arabidopsis efficiently epoxidizes physiological unsaturated fatty acids with complete stereoselectivity.
    Blée E; Flenet M; Boachon B; Fauconnier ML
    FEBS J; 2012 Oct; 279(20):3981-95. PubMed ID: 22913587
    [TBL] [Abstract][Full Text] [Related]  

  • 60. bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating fatty acid desaturase3.
    Mendes A; Kelly AA; van Erp H; Shaw E; Powers SJ; Kurup S; Eastmond PJ
    Plant Cell; 2013 Aug; 25(8):3104-16. PubMed ID: 23995083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.