BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35419688)

  • 1. A novel method for dearsenization from arsenic-bearing waste slag by selective chlorination and low-temperature volatilization.
    Xing Z; Yang H; Xue X; Jiang P
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):60145-60152. PubMed ID: 35419688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient removal and recovery of arsenic from copper smelting flue dust by a roasting method: Process optimization, phase transformation and mechanism investigation.
    Zhang W; Che J; Xia L; Wen P; Chen J; Ma B; Wang C
    J Hazard Mater; 2021 Jun; 412():125232. PubMed ID: 33951866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient approach to utilize copper smelting slag: Separating nonferrous metals and reducing iron oxide at high temperature.
    Wu L; Li H; Liu K; Mei H; Xia Y; Dong Y
    Waste Manag; 2023 Dec; 172():182-191. PubMed ID: 37922838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-treatment of copper smelting flue dust and arsenic sulfide residue by a pyrometallurgical approach for simultaneous removal and recovery of arsenic.
    Zhang W; Che J; Wen P; Xia L; Ma B; Chen J; Wang C
    J Hazard Mater; 2021 Aug; 416():126149. PubMed ID: 34492933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic release pathway and the interaction principle among major species in vacuum sulfide reduction roasting of copper smelting flue dust.
    Shi T; Xu B; He J; Liu X; Zuo Z
    Environ Pollut; 2023 Aug; 330():121809. PubMed ID: 37172770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic removal from copper slag matrix by high temperature sulfide-reduction-volatilization.
    Zhao Z; Wang Z; Xu W; Qin W; Lei J; Dong Z; Liang Y
    J Hazard Mater; 2021 Aug; 415():125642. PubMed ID: 34088174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A potential industrial waste-waste co-treatment process of utilizing waste SO
    Wan X; Taskinen P; Shi J; Jokilaakso A
    J Hazard Mater; 2021 Jul; 414():125541. PubMed ID: 33677318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals.
    Che J; Zhang W; Ma B; Chen Y; Wang L; Wang C
    Sci Total Environ; 2022 Oct; 843():157063. PubMed ID: 35780900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of medical waste incineration fly ash on the promotion of heavy metal chlorination volatilization from incineration residues.
    Shen W; Zhu N; Xi Y; Huang J; Li F; Wu P; Dang Z
    J Hazard Mater; 2022 Mar; 425():128037. PubMed ID: 34906873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive low-temperature volatilization control: Efficient separation of arsenic and antimony from smelter dust.
    Che J; Zhang W; Chen Y; Feng S; Zuo Y; Wang C
    Sci Total Environ; 2024 Feb; 912():169366. PubMed ID: 38104839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of thermal treatment on Pb recovery and Cl removal from sintering dust.
    Long H; Li H; Ma P; Zhou Z; Xie H; Yin S; Wang Y; Zhang L; Li S
    J Hazard Mater; 2021 Feb; 403():123595. PubMed ID: 32777748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy of directional oxidation and vacuum gasification for green recovery of As
    Fan K; Kong X; Yi J; Gao Z; Li S; Yang B; Xu B; Jiang W
    Sci Total Environ; 2023 Feb; 859(Pt 1):160091. PubMed ID: 36370775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient separation and recovery of lithium through volatilization in the recycling process of spent lithium-ion batteries.
    Qu G; Wei Y; Liu C; Yao S; Zhou S; Li B
    Waste Manag; 2022 Aug; 150():66-74. PubMed ID: 35803158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for arsenic pollution control from copper pyrometallurgy based on the study of arsenic sources, emission pathways and speciation characterization in copper flash smelting systems.
    Zhou H; Liu G; Zhang L; Zhou C; Mian MM; Cheema AI
    Environ Pollut; 2021 Feb; 270():116203. PubMed ID: 33321434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The recovery of Zn and Pb and the manufacture of lightweight bricks from zinc smelting slag and clay.
    Hu H; Deng Q; Li C; Xie Y; Dong Z; Zhang W
    J Hazard Mater; 2014 Apr; 271():220-7. PubMed ID: 24637448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-treatment of copper electrolytic sludges and copper scraps for the recycled utilization of copper and arsenic.
    Xu J; Li L; Xu Z; Xiao Y; Lei Y; Liu Y
    Chemosphere; 2023 Nov; 341():140065. PubMed ID: 37673184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a green-sustainable industrialized cleaner utilization for refractory cyanide tailings containing sulfur.
    Li H; Wang J; Zhu X; Yang T; Deng J; Yan B; Mao X; Zhang Y; Li S
    Sci Total Environ; 2022 Jun; 827():154359. PubMed ID: 35259380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag.
    Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y
    Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags.
    Zhang X; Sun Y; Ma Y; Ji W; Ren Y
    Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An all-in-one strategy for resource recovery and immobilization of arsenic from arsenic-bearing gypsum sludge.
    Yong Y; Yongkui L; Jianhang H; Dapeng Z; Hua W
    Chemosphere; 2022 Jun; 296():134078. PubMed ID: 35202660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.