BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35419688)

  • 21. Deep resource utilization of hazardous arsenic-alkali slag: Thermodynamic analysis, mechanism investigation and process optimization.
    Tian J; Sun W; Han H; Wang Y; Peng J; Zhang X
    J Environ Manage; 2024 Mar; 355():120440. PubMed ID: 38437740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of selective mercury recovery technology by using iron iodide from waste sludge of non-ferrous metal smelting process.
    Lee E; Lee J; Kim T; Lee S; Back S; Kim S
    Environ Pollut; 2022 Dec; 315():120402. PubMed ID: 36228851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of Silicone Tetrachloride from Rice Husk by Chlorination and Performance of Mercury Adsorption from Aqueous Solution of the Chlorinated Residue.
    Mochizuki Y; Bud J; Liu J; Tsubouchi N
    ACS Omega; 2020 Nov; 5(45):29110-29120. PubMed ID: 33225142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of chlorination additives on metal separation during the pyrometallurgical recovery of spent lithium-ion batteries.
    Qu G; Wei Y; Li B; Wang H
    Waste Manag; 2024 Jul; 186():331-344. PubMed ID: 38959617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Innovative method for minimization of waste containing Fe, Mn and Ti during comprehensive utilization of vanadium slag.
    Liu S; Wang L; Chou KC
    Waste Manag; 2021 May; 127():179-188. PubMed ID: 33945936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching.
    Gu F; Zhang Y; Peng Z; Su Z; Tang H; Tian W; Liang G; Lee J; Rao M; Li G; Jiang T
    J Hazard Mater; 2019 Jul; 374():83-91. PubMed ID: 30981016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel optimal formula of nickel extraction: arsenic removal from niccolite by controlling arsenic-containing phases.
    Tang X; He Y
    Front Chem; 2023; 11():1290831. PubMed ID: 38146428
    [No Abstract]   [Full Text] [Related]  

  • 28. Selective preparation of lithium carbonate from overhaul slag by high temperature sulfuric acid roasting - Water leaching.
    Dong L; Jiao F; Liu W; Wang D; Chen Wang ; Qin W
    J Environ Manage; 2024 May; 359():120963. PubMed ID: 38728980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decomposition behavior and reaction mechanism of Ce
    Hua Z; Geng A; Tang Z; Zhao Z; Liu H; Yao Y; Yang Y
    J Environ Manage; 2019 Nov; 249():109383. PubMed ID: 31419671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recycling of nickel smelter slag for arsenic remediation--an experimental study.
    Chowdhury SR; Yanful EK; Pratt AR
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10096-107. PubMed ID: 24770924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progress of gaseous arsenic removal from flue gas by adsorption: Experimental and theoretical calculations.
    Yan X; Li Q; Huang X; Li B; Li S; Wang Q
    J Environ Sci (China); 2024 Feb; 136():470-485. PubMed ID: 37923457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural Destruction of As-Sb Solid Solution through a Selective Oxidation Process in the Presence of CaO and Its Effect on As Removal from the As-Sb Dust.
    Xu M; Li L; Mao KX
    ACS Omega; 2019 Apr; 4(4):6968-6976. PubMed ID: 31459809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recovering metals from flue dust produced in secondary copper smelting through a novel process combining low temperature roasting, water leaching and mechanochemical reduction.
    Chen J; Zhang W; Ma B; Che J; Xia L; Wen P; Wang C
    J Hazard Mater; 2022 May; 430():128497. PubMed ID: 35739678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency.
    Kim SH; Jeong S; Chung H; Nam K
    Chemosphere; 2018 Oct; 208():916-921. PubMed ID: 30068035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fundamental research on selective arsenic removal from high-salinity alkaline wastewater.
    Wang Y; Tian J; Peng J; Sun W; Zhang X; Han H; Shen J
    Chemosphere; 2022 Nov; 307(Pt 3):135992. PubMed ID: 35964730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting.
    Li N; Guo J; Chang Z; Dang H; Zhao X; Ali S; Li W; Zhou H; Sun C
    RSC Adv; 2019 Jul; 9(41):23908-23915. PubMed ID: 35530593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-treatment of waste smelting slags and gypsum wastes via reductive-sulfurizing smelting for valuable metals recovery.
    Li Y; Chen Y; Tang C; Yang S; He J; Tang M
    J Hazard Mater; 2017 Jan; 322(Pt B):402-412. PubMed ID: 27773439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process.
    Zhou H; Liu G; Zhang L; Zhou C
    J Hazard Mater; 2021 Jan; 401():123293. PubMed ID: 32629353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recoveries of rare elements Ga, Ge, In and Sn from waste electric and electronic equipment through secondary copper smelting.
    Avarmaa K; Yliaho S; Taskinen P
    Waste Manag; 2018 Jan; 71():400-410. PubMed ID: 29032002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of the heating rate and premelting process on the melting point and volatilization of a fluorine-containing slag.
    Zhao Z; Zhao J; Tan Z; Qu B; Lu L; Cui Y
    Sci Rep; 2020 Jul; 10(1):11254. PubMed ID: 32647216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.