These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 3541975)
1. Yeast enolase carboxyl modification using Woodward's reagent K. Sinha U; Brewer JM Biochem Cell Biol; 1986 Oct; 64(10):970-5. PubMed ID: 3541975 [TBL] [Abstract][Full Text] [Related]
2. A spectrophotometric method for quantitation of carboxyl group modification of proteins using Woodward's Reagent K. Sinha U; Brewer JM Anal Biochem; 1985 Dec; 151(2):327-33. PubMed ID: 3913329 [TBL] [Abstract][Full Text] [Related]
3. The carboxyl group in the active center of transketolase. Meshalkina LE; Kuimov AN; Kabakov AN; Tsorina ON; Kochetov GA Biochem Int; 1984 Jul; 9(1):9-16. PubMed ID: 6477641 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory effects of Woodward's reagent K on carrier-mediated anion transport in rabbit intestinal brush border membrane vesicles. Tam TN; Schron CM Zhonghua Yi Xue Za Zhi (Taipei); 1999 Feb; 62(2):98-106. PubMed ID: 10063720 [TBL] [Abstract][Full Text] [Related]
5. Evidence for an essential carboxyl group for yeast phosphoglycerate kinase. Reaction with Woodward's reagent K. Brake AJ; Weber BH J Biol Chem; 1974 Sep; 249(17):5452-7. PubMed ID: 4606536 [No Abstract] [Full Text] [Related]
6. Modification of maize phosphoenolpyruvate carboxylase by Woodward's reagent K. Maralihalli GB; Bhagwat AS J Protein Chem; 1993 Aug; 12(4):451-7. PubMed ID: 8251065 [TBL] [Abstract][Full Text] [Related]
7. [Effect of Woodward's reagent K on tetrodotoxin-sensitive sodium channels of spinal ganglion neurons of the rat]. Neguliaev IuA; Naumov AP; Vedernikova EA Neirofiziologiia; 1986; 18(6):839-42. PubMed ID: 2433613 [TBL] [Abstract][Full Text] [Related]
9. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions. Peng Z; Pilo AL; Luongo CA; McLuckey SA J Am Soc Mass Spectrom; 2015 Oct; 26(10):1686-94. PubMed ID: 26122523 [TBL] [Abstract][Full Text] [Related]
10. Woodward's reagent K inactivation of Escherichia coli L-threonine dehydrogenase: increased absorbance at 340-350 nm is due to modification of cysteine and histidine residues, not aspartate or glutamate carboxyl groups. Johnson AR; Dekker EE Protein Sci; 1996 Feb; 5(2):382-90. PubMed ID: 8745417 [TBL] [Abstract][Full Text] [Related]
11. Covalent labeling of the nonsubstrate ligand-binding site of glutathione S-transferases with bilirubin-Woodward's reagent K. Boyer TD J Biol Chem; 1986 Apr; 261(12):5363-7. PubMed ID: 3957929 [TBL] [Abstract][Full Text] [Related]
12. Conversion of Woodward's Reagent K in an aqueous medium: mathematical analysis applied to enzyme modification. Kuimov AN; Kochetov GA Anal Biochem; 1988 Jul; 172(1):56-60. PubMed ID: 3189775 [TBL] [Abstract][Full Text] [Related]
13. Spectrophotometric tool for the determination of the total carboxylate content in proteins; molar extinction coefficient of the enol ester from Woodward's reagent K reacted with protein carboxylates. Kosters HA; de Jongh HH Anal Chem; 2003 May; 75(10):2512-6. PubMed ID: 12918999 [TBL] [Abstract][Full Text] [Related]
14. Reaction of Woodward's reagent K with D-xylose isomerases. Modification of an active site carboxylate residue. Vangrysperre W; Kersters-Hilderson H; Callens M; De Bruyne CK Biochem J; 1989 May; 260(1):163-9. PubMed ID: 2775179 [TBL] [Abstract][Full Text] [Related]
15. Essential carboxyl residues in yeast enolase. George AL; Borders CL Biochem Biophys Res Commun; 1979 Mar; 87(1):59-65. PubMed ID: 378223 [No Abstract] [Full Text] [Related]
16. Inactivation of human liver arginase by Woodward's reagent K: evidence for reaction with His141. Carvajal N; Uribe E; López V; Salas M Protein J; 2004 Apr; 23(3):179-83. PubMed ID: 15200049 [TBL] [Abstract][Full Text] [Related]
17. Woodward's reagent K reacts with histidine and cysteine residues in Escherichia coli and Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases. Bustos P; Gajardo MI; Gómez C; Goldie H; Cardemil E; Jabalquinto AM J Protein Chem; 1996 Jul; 15(5):467-72. PubMed ID: 8895092 [TBL] [Abstract][Full Text] [Related]
18. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport. Salhany JM; Sloan RL; Cordes KS Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of the mitochondrial phosphate carrier by a reaction with a carboxyl group reagent. Wolf G; Genchi G; Palmieri F Biochem Biophys Res Commun; 1989 Jul; 162(1):212-6. PubMed ID: 2751650 [TBL] [Abstract][Full Text] [Related]
20. Functional reconstitution of cytochrome P-450scc with hemin activated with Woodward's reagent K. Formation of a hemeprotein cross-link. Pikuleva IA; Lapko AG; Chashchin VL J Biol Chem; 1992 Jan; 267(3):1438-42. PubMed ID: 1730693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]