These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 35419849)
1. Drought and warming alter gross primary production allocation and reduce productivity in a widespread pasture grass. Chandregowda MH; Tjoelker MG; Power SA; Pendall E Plant Cell Environ; 2022 Aug; 45(8):2271-2291. PubMed ID: 35419849 [TBL] [Abstract][Full Text] [Related]
2. Belowground carbon allocation, root trait plasticity, and productivity during drought and warming in a pasture grass. Chandregowda MH; Tjoelker MG; Pendall E; Zhang H; Churchill AC; Power SA J Exp Bot; 2023 Mar; 74(6):2127-2145. PubMed ID: 36640126 [TBL] [Abstract][Full Text] [Related]
4. Effects of elevated CO₂, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Xu Z; Shimizu H; Ito S; Yagasaki Y; Zou C; Zhou G; Zheng Y Planta; 2014 Feb; 239(2):421-35. PubMed ID: 24463932 [TBL] [Abstract][Full Text] [Related]
5. Water use efficiency and shoot biomass production under water limitation is negatively correlated to the discrimination against Mårtensson LM; Carlsson G; Prade T; Kørup K; Lærke PE; Jensen ES Plant Physiol Biochem; 2017 Apr; 113():1-5. PubMed ID: 28152389 [TBL] [Abstract][Full Text] [Related]
6. The partitioning of gross primary production for young Eucalyptus tereticornis trees under experimental warming and altered water availability. Drake JE; Tjoelker MG; Aspinwall MJ; Reich PB; Pfautsch S; Barton CVM New Phytol; 2019 May; 222(3):1298-1312. PubMed ID: 30536971 [TBL] [Abstract][Full Text] [Related]
7. Drought and heat wave impacts on grassland carbon cycling across hierarchical levels. Li L; Zheng Z; Biederman JA; Qian R; Ran Q; Zhang B; Xu C; Wang F; Zhou S; Che R; Dong J; Xu Z; Cui X; Hao Y; Wang Y Plant Cell Environ; 2021 Jul; 44(7):2402-2413. PubMed ID: 32275067 [TBL] [Abstract][Full Text] [Related]
8. Changes in mass allocation play a more prominent role than morphology in resource acquisition of the rhizomatous Leymus chinensis under drought stress. Yang Y; Shi Y; Wei X; Han J; Wang J; Mu C; Zhang J Ann Bot; 2023 Oct; 132(1):121-132. PubMed ID: 37279964 [TBL] [Abstract][Full Text] [Related]
9. Interactive effects of elevated temperature and drought on plant carbon metabolism: A meta-analysis. Wang Z; Wang C Glob Chang Biol; 2023 May; 29(10):2824-2835. PubMed ID: 36794475 [TBL] [Abstract][Full Text] [Related]
10. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. Powell TL; Galbraith DR; Christoffersen BO; Harper A; Imbuzeiro HMA; Rowland L; Almeida S; Brando PM; da Costa ACL; Costa MH; Levine NM; Malhi Y; Saleska SR; Sotta E; Williams M; Meir P; Moorcroft PR New Phytol; 2013 Oct; 200(2):350-365. PubMed ID: 23844931 [TBL] [Abstract][Full Text] [Related]
11. Shifting plant species composition in response to climate change stabilizes grassland primary production. Liu H; Mi Z; Lin L; Wang Y; Zhang Z; Zhang F; Wang H; Liu L; Zhu B; Cao G; Zhao X; Sanders NJ; Classen AT; Reich PB; He JS Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4051-4056. PubMed ID: 29666319 [TBL] [Abstract][Full Text] [Related]
12. Drought timing, not previous drought exposure, determines sensitivity of two shortgrass species to water stress. Lemoine NP; Griffin-Nolan RJ; Lock AD; Knapp AK Oecologia; 2018 Dec; 188(4):965-975. PubMed ID: 30269254 [TBL] [Abstract][Full Text] [Related]
13. Are the interaction effects of warming and drought on nutritional status and biomass production in a tropical forage legume greater than their individual effects? Olivera-Viciedo D; de Mello Prado R; Martinez CA; Habermann E; de Cássia Piccolo M; Calero-Hurtado A; Barreto RF; Peña K Planta; 2021 Oct; 254(5):104. PubMed ID: 34686920 [TBL] [Abstract][Full Text] [Related]
14. Effects of warming and clipping on ecosystem carbon fluxes across two hydrologically contrasting years in an alpine meadow of the Qinghai-Tibet Plateau. Peng F; You Q; Xu M; Guo J; Wang T; Xue X PLoS One; 2014; 9(10):e109319. PubMed ID: 25291187 [TBL] [Abstract][Full Text] [Related]
15. General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Slot M; Kitajima K Oecologia; 2015 Mar; 177(3):885-900. PubMed ID: 25481817 [TBL] [Abstract][Full Text] [Related]
16. Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Slot M; Rey-Sánchez C; Gerber S; Lichstein JW; Winter K; Kitajima K Glob Chang Biol; 2014 Sep; 20(9):2915-26. PubMed ID: 24604769 [TBL] [Abstract][Full Text] [Related]
17. Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery. Zang U; Goisser M; Grams TE; Häberle KH; Matyssek R; Matzner E; Borken W Tree Physiol; 2014 Jan; 34(1):29-38. PubMed ID: 24420388 [TBL] [Abstract][Full Text] [Related]
18. A possible link between life and death of a xeric tree in desert. Xu GQ; McDowell NG; Li Y J Plant Physiol; 2016 May; 194():35-44. PubMed ID: 26968083 [TBL] [Abstract][Full Text] [Related]
19. Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. Albert KR; Mikkelsen TN; Michelsen A; Ro-Poulsen H; van der Linden L J Plant Physiol; 2011 Sep; 168(13):1550-61. PubMed ID: 21511363 [TBL] [Abstract][Full Text] [Related]
20. Effects of elevated CO₂, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Albert KR; Ro-Poulsen H; Mikkelsen TN; Michelsen A; Van Der Linden L; Beier C Plant Cell Environ; 2011 Jul; 34(7):1207-22. PubMed ID: 21410715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]